Features and Benefits

- Small size, low cost
- Easy to integrate
- Factory calibrated in wide temperature range: -40 to 125 °C for sensor temperature and -70 to 380 °C for object temperature.
- High accuracy of 0.5°C over wide temperature range (0..+50°C for both Ta and To)
- High (medical) accuracy calibration optional
- Measurement resolution of 0.02°C
- Single and dual zone versions
- SMBus compatible digital interface
- Customizable PWM output for continuous reading
- Available in 3V and 5V versions
- Simple adaptation for 8 to 16V applications
- Power saving mode
- Different package options for applications and measurements versatility
- Automotive grade

Applications Examples

- High precision non-contact temperature measurements;
- Thermal Comfort sensor for Mobile Air Conditioning control system;
- Temperature sensing element for residential, commercial and industrial building air conditioning;
- Windshield defogging;
- Automotive blind angle detection;
- Industrial temperature control of moving parts;
- Temperature control in printers and copiers;
- Home appliances with temperature control;
- Healthcare;
- Livestock monitoring;
- Movement detection;
- Multiple zone temperature control – up to 100 sensors can be read via common 2 wires
- Thermal relay/alert
- Body temperature measurement

Ordering Information

Part No. MLX90614 X X X

(1) Supply Voltage:
A - 5V power (adaptable for 12V)
B - 3V power
(2) Number of thermopiles:
A – single zone
B – dual zone
(3) Package type:
A – Filter inside
B – Filter outside

1 Functional diagram

2 General Description

The MLX90614 is an Infra Red thermometer for non contact temperature measurements. Both the IR sensitive thermopile detector chip and the signal conditioning ASSP are integrated in the same TO-39 can. Thanks to its low noise amplifier, 17-bit ADC and powerful DSP unit, a high accuracy and resolution of the thermometer is achieved.

The thermometer comes factory calibrated with a digital PWM and SMBus output.

As a standard, the 10-bit PWM is configured to continuously transmit the measured temperature in range of -20 to 120 °C, with an output resolution of 0.14 °C. The POR default is SMBus interface.
General description (continued)

The MLX90614 is built from 2 chips developed and manufactured by Melexis:
The Infra Red thermopile detector MLX81101.
The signal conditioning ASSP MLX90302, specially designed to process the output of IR sensor.
The device is available in an industry standard TO-39 package.

Thanks to the low noise amplifier, high resolution 17-bit ADC and powerful DSP unit of MLX90302 high
accuracy and resolution of the thermometer is achieved. The calculated object and ambient temperatures are
available in RAM of MLX90302 with resolution of 0.01 °C. They are accessible by 2 wire serial SMBus
compatible protocol (0.02°C resolution) or via 10-bit PWM (Pulse Width Modulated) output of the device.

The MLX90614 is factory calibrated in wide temperature ranges: -40 to 125 °C for the ambient temperature
and -70 to 382.2 °C for the object temperature. The 10-bit PWM is as a standard configured to transmit
continuously the measured object temperature for an object temperature range of -20 to 120 °C with an
output resolution of 0.14 °C. The PWM can be easily customized for virtually any range desired by customer
by changing the content of 2 EEPROM cells. This has no effect on the factory calibration of the device.

The PWM pin can also be configured to act as a thermal relay (input is To), thus allowing for an easy and
cost effective implementation in thermostats or temperature (freezing/boiling) alert applications. The
temperature threshold is user programmable. In an SMBus system this feature can act as a processor
interrupt that can trigger reading all slaves on the bus and to determine the precise condition.

As a standard, the MLX90614 is calibrated for an object emissivity of 1. It can be easily customized by the
customer for any other emissivity in the range 0.1-1.0 without the need of recalibration with a black body.

The thermometer is available in 2 supply voltage options: 5V compatible or 3V (battery) compatible. The 5V
can be easily adopted to operate from a higher supply voltage (8-16V, for example) by use of few external
components (refer to “Applications information” section for details).

An optical filter (long-wave pass) that cuts off the visible and near infra-red radiant flux is integrated in the
package to provide sunlight immunity.
Table of Contents

1 Functional diagram .. 1
2 General Description .. 1
 General description (continued) ... 2
3 Glossary of Terms .. 4
4 Maximum ratings ... 4
5 Pin definitions and descriptions .. 5
6 Electrical Specifications ... 6
 6.1 MLX90614Axx ... 6
 6.2 MLX90614Bxx ... 8
7 Detailed description .. 10
 7.1 Block diagram ... 10
 7.2 Signal processing principle .. 10
 7.3 Block description .. 11
 7.3.1 Amplifier ... 11
 7.3.2 Supply regulator and POR .. 11
 7.3.3 EEPROM ... 11
 7.3.4 RAM .. 13
 7.4 SMBus compatible 2-wire protocol ... 13
 7.4.1 Functional description .. 13
 7.4.2 Differences with the standard SMBus specification (reference [1]) ... 14
 7.4.3 Detailed description ... 14
 7.4.4 AC specification for SMBus .. 15
 7.4.5 Bit transfer .. 16
 7.4.6 Commands .. 16
 7.4.7 Sleep Mode .. 17
 7.5 PWM ... 18
 7.5.1 Single PWM format ... 18
 7.5.2 Extended PWM format ... 19
 7.5.3 Customizing the temperature range for PWM output .. 20
 7.6 Switching Between PWM and SMBus communication .. 21
 7.6.1 PWM is enabled .. 21
 7.6.2 Request condition ... 21
 7.6.3 PWM is disabled .. 21
 7.7 Computation of ambient and object temperatures ... 22
 7.7.1 Ambient temperature Ta ... 22
 7.7.2 Object temperature To ... 22
 7.7.3 Calculation flow .. 22
 7.8 Thermal relay ... 24
 7.9.1 Ambient temperature Ta ... 22
 7.9.2 Object temperature To .. 22
 7.9.3 Calculation flow ... 22
 8 Unique Features ... 24
9 Performance Graphs .. 25
 9.1 Temperature accuracy of the MLX90601AAA ... 25
 9.2 Field Of View (FOV) ... 27
10 Applications Information .. 28
 10.1 Use of the MLX90614 thermometer in SMBus configuration .. 28
 10.2 Use of multiple MLX90614s in SMBus configuration ... 28
 10.3 Thermal alert / thermostat .. 29
 10.4 High voltage source operation .. 29
11 Application Comments ... 30
12 ESD Precautions ... 32
13 FAQ ... 32
14 Package Information ... 34
15 References ... 35
16 Disclaimer ... 35

901090614 Page 3 of 35
Rev 1.0 14/Sep/2006

Data Sheet
3 Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTAT</td>
<td>Proportional To Absolute Temperature sensor (package temperature)</td>
</tr>
<tr>
<td>PTC</td>
<td>Positive Temperature Coefficient sensor (package temperature)</td>
</tr>
<tr>
<td>POR</td>
<td>Power On Reset</td>
</tr>
<tr>
<td>HFO</td>
<td>High Frequency Oscillator (RC)</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>FIR</td>
<td>Finite Impulse Response. Digital filter</td>
</tr>
<tr>
<td>IIR</td>
<td>Infinite Impulse Response. Digital filter</td>
</tr>
<tr>
<td>IR</td>
<td>Infra-Red</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse With Modulation</td>
</tr>
<tr>
<td>DC</td>
<td>Duty Cycle (of the PWM); Direct Current (for settled conditions specifications)</td>
</tr>
<tr>
<td>FOV</td>
<td>Field Of View</td>
</tr>
<tr>
<td>SDA,SCL</td>
<td>Serial DAta, Serial CLock – SMBus compatible communication pins</td>
</tr>
<tr>
<td>Ta</td>
<td>Ambient Temperature measured from the chip – (the package temperature)</td>
</tr>
<tr>
<td>To</td>
<td>Object Temperature, ‘seen’ from IR sensor</td>
</tr>
<tr>
<td>ESD</td>
<td>Electro-Static Discharge</td>
</tr>
<tr>
<td>EMC</td>
<td>Electro-Magnetic Compatibility</td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Defined</td>
</tr>
</tbody>
</table>

Note: sometimes the MLX90614xxx is referred to as “the module”.

4 Maximum ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MLX90614AAA</th>
<th>MLX90614BAA</th>
<th>MLX90614AAB</th>
<th>MLX90614BAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V_{DD} (over voltage)</td>
<td>7V</td>
<td>5V</td>
<td>7V</td>
<td>5V</td>
</tr>
<tr>
<td>Supply Voltage, V_{DD} (operating)</td>
<td>5.5V</td>
<td>3.6V</td>
<td>5.5V</td>
<td>3.6V</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>0.4 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range, T_a</td>
<td>-40 to +125°C</td>
<td>-40...+85°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range, T_s</td>
<td>-40...+125°C</td>
<td></td>
<td>-40...+105°C</td>
<td></td>
</tr>
<tr>
<td>ESD Sensitivity (AEC Q100 002)</td>
<td>2kV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC current into SCL/Vz (Vz mode)</td>
<td>2 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC sink current, SDA./PWM pin</td>
<td>25 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC source current, SDA./PWM pin</td>
<td>25 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC clamp current, SDA./PWM pin</td>
<td>25 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC clamp current, SCL pin</td>
<td>25 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Absolute maximum ratings for MLX90614

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
5 Pin definitions and descriptions

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSS</td>
<td>Ground. The metal can is also connected to this pin.</td>
</tr>
<tr>
<td>SCL / Vz</td>
<td>Serial clock input for 2 wire communications protocol. 5.7V zener is available at this pin for connection of external bipolar transistor to MLX90614A to supply the device from external 8-16V source.</td>
</tr>
<tr>
<td>PWM / SDA</td>
<td>Digital input / output. In normal mode the measured object temperature is available at this pin Pulse Width Modulated.</td>
</tr>
<tr>
<td>VDD</td>
<td>External supply voltage.</td>
</tr>
</tbody>
</table>

Table 2: Pin description MLX90614

Note: for +12V (+8…+16V) powered operation refer to the Application information section. For EMC and isothermal conditions reasons it is highly recommended not to use any electrical connection to the metal can except by the Vss pin. With the SCL/Vz and PWM/SDA pins operated in 2-wire interface mode, the input Schmidt trigger function is automatically enabled.
6 Electrical Specifications

6.1 MLX90614Axx

All parameters are preliminary for $T_A = 25 \, ^\circ C$, $V_{DD} = 5V$ (unless otherwise specified).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External supply</td>
<td>V_{DD}</td>
<td>No load</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{DD}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Supply current (programming)</td>
<td>I_{DDpr}</td>
<td>No load, erase/write EEPROM operations</td>
<td></td>
<td></td>
<td>1.5</td>
<td>mA</td>
</tr>
<tr>
<td>Zener voltage</td>
<td>V_z</td>
<td>$I_z = 75...400 \mu A$</td>
<td>5.6</td>
<td>5.75</td>
<td>5.8</td>
<td>V</td>
</tr>
<tr>
<td>Zener voltage</td>
<td>$V_z(T_a)$</td>
<td>$I_z=70...400\mu A$, full temperature range</td>
<td>5.15</td>
<td>5.75</td>
<td>6.24</td>
<td>V</td>
</tr>
<tr>
<td>Power On Reset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POR level</td>
<td>V_{POR}</td>
<td>Power-up, power-down and brown-out</td>
<td>2.7</td>
<td>3.0</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td>V_{DD} rise time</td>
<td>T_{POR}</td>
<td>Ensure POR signal</td>
<td></td>
<td>3</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>Output valid (result in RAM)</td>
<td>T_{valid}</td>
<td>After POR</td>
<td>0.15</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse width modulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWM resolution</td>
<td>PWMres</td>
<td>Data band</td>
<td>10</td>
<td></td>
<td>bit</td>
<td></td>
</tr>
<tr>
<td>PWM output period</td>
<td>PWM$_{T, def}$</td>
<td>Factory default, internal oscillator factory calibrated</td>
<td>1.024</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>PWM period stability</td>
<td>dPWM$_T$</td>
<td>Internal oscillator factory calibrated, over the entire operation range and supply voltage</td>
<td></td>
<td>-4</td>
<td>+4</td>
<td>%</td>
</tr>
<tr>
<td>Output high Level</td>
<td>PWM$_{H}$</td>
<td>$I_{source} = 2 , mA$</td>
<td>$V_{DD} - 0.2$</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output low Level</td>
<td>PWM$_{L0}$</td>
<td>$I_{sink} = 2 , mA$</td>
<td>$V_{SS} + 0.2$</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output drive current</td>
<td>Idrive$_{PWM}$</td>
<td>$V_{out,H} = V_{DD} - 0.8V$</td>
<td>20</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Output sink current</td>
<td>Isink$_{PWM}$</td>
<td>$V_{out,L} = 0.8V$</td>
<td>20</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Output settling time</td>
<td>T_{set}</td>
<td>100 pF capacitive load, full operating T_a range</td>
<td>500</td>
<td></td>
<td>TBD</td>
<td>ns</td>
</tr>
<tr>
<td>Output settling time</td>
<td>T_{setREC}</td>
<td>220 Ohm in series with 47nF load on the wire, full T_a operating range</td>
<td>20</td>
<td>50</td>
<td>us</td>
<td></td>
</tr>
</tbody>
</table>
MLX90614 family

Single and Dual Zone Infra Red Thermometer in TO-39

### Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
SMBus compatible 2-wire interface
Input high voltage | \(V_{IH} \) | Over temperature and supply | 1.8 | 2 | 2.2 | V
Input high voltage | \(V_{IH}(T_a,V) \) | Over temperature and supply | 1.6 | 2.4 | V | V
Input low voltage | \(V_L \) | | 0.7 | 1.0 | 1.3 | V
Input low voltage | \(V_L(T_a,V) \) | Over temperature and supply | 0.5 | 1.5 | V | V
Output low voltage | \(V_{OL} \) | SDA pin in open drain mode, over temperature and supply, \(I_{sink} = 2 \text{mA} \) | 0.2 | | | V
SCL leakage | \(I_{SCL,\text{leak}} \) | \(V_{SCL}=4 \text{V}, T_a=+85^\circ \text{C} \) | 30 | | | \(\mu \text{A} \)
SDA leakage | \(I_{SDA,\text{leak}} \) | \(V_{SDA}=4 \text{V}, T_a=+85^\circ \text{C} \) | 0.3 | | | \(\mu \text{A} \)
SCL capacitance | \(C_{SCL} \) | | | 10 | | pF
SDA capacitance | \(C_{SDA} \) | | | 10 | | pF
Slave address | \(SA \) | Factory default | 5Ah | | | hex
SMBus Request | \(t_{\text{REQ}} \) | SCL low | 1.024 | | | ms
Timeout, low | \(t_{\text{SCL,low}} \) | SCL low | 30 | | | ms
Timeout, high | \(t_{\text{SCL,high}} \) | SCL high | 50 | | | us
Acknowledge setup time | \(t_{\text{suc}}(\text{MD}) \) | 8-th SCL falling edge, Master | 0.5 | 1.5 | | us
Acknowledge hold time | \(t_{\text{hdac}}(\text{MD}) \) | 9-th SCL falling edge, Master | 1.5 | 2.5 | | us
Acknowledge setup time | \(t_{\text{suc}}(\text{SD}) \) | 8-th SCL falling edge, Slave | 2.5 | | | us
Acknowledge hold time | \(t_{\text{hdac}}(\text{SD}) \) | 9-th SCL falling edge, Slave | 1.5 | | | us

EEPROM

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Data retention | | \(T_a = +85^\circ \text{C} \) | 10 | | | years
Erase/write cycles | | \(T_a = +25^\circ \text{C} \) | 100,000 | | | Times
Erase/write cycles | | \(T_a = +125^\circ \text{C} \) | 10,000 | | | Times
Erase cell time | \(t_{\text{erase}} \) | | 5 | | | ms
Write cell time | \(t_{\text{write}} \) | | 5 | | | ms

Notes: All the communication and refresh rate timings are given for the nominal calibrated HFO frequency and will vary with this frequency's variations.

1. All PWM timing specifications are given for single PWM output (factory default for MLX90614AxAx). For the extended PWM output (factory default for the MLX90614x6x) each period has twice the timing specifications (refer to the PWM detailed description section). With large capacitive load lower PWM frequency is recommended. Thermal relay output (when configured) has the PWM DC specification and can be programmed as push-pull, or NMOS open drain. PWM is free-running, power-up factory default is SMBus, refer to 7.6, “Switching between PWM and SMBus communication” for details.

2. For SMBus compatible interface on 12V application refer to Application information section. SMBus compatible interface is described in details in the SMBus detailed description section. Maximum number of MLX90614xxx devices on one bus is 127, higher pullup currents are recommended for higher number of devices, faster bus data transfer rates, and increased reactive loading of the bus. MLX90614xxx is always a slave device on the bus. MLX90614xxx can work in both low-power and high-power SMBus communication.

All voltage are with respect to the Vss (ground) unless otherwise noted.

Power saving mode is not available on the 5V version (MLX90614Axx).
6.2 MLX90614Bxx

All parameters are preliminary for $T_A = 25 \, ^\circ C$, $V_{DD} = 3V$ (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External supply</td>
<td>V_{DD}</td>
<td></td>
<td>2.4</td>
<td>3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_{DD}</td>
<td>No load</td>
<td></td>
<td>1</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Supply current (programming)</td>
<td>I_{DDpr}</td>
<td>No load, erase/write EEPROM operations</td>
<td></td>
<td>1.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Power-down supply current</td>
<td>I_{sleep}</td>
<td>no load</td>
<td>1</td>
<td>2.5</td>
<td>5</td>
<td>uA</td>
</tr>
<tr>
<td>Power-down supply current</td>
<td>I_{sleep}</td>
<td>Full temperature range</td>
<td>1</td>
<td>2.5</td>
<td>6</td>
<td>uA</td>
</tr>
<tr>
<td>Power On Reset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POR level</td>
<td>V_{POR}</td>
<td>Power-up, power-down and brown-out</td>
<td>1.6</td>
<td>1.85</td>
<td>2.1</td>
<td>V</td>
</tr>
<tr>
<td>V_{DD} rise time</td>
<td>T_{POR}</td>
<td>Ensure POR signal</td>
<td></td>
<td>1</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Output valid</td>
<td>T_{valid}</td>
<td>After POR</td>
<td>0.15</td>
<td></td>
<td></td>
<td>s</td>
</tr>
<tr>
<td>Pulse width modulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWM resolution</td>
<td>PWM_{res}</td>
<td>Data band</td>
<td>10</td>
<td></td>
<td></td>
<td>bit</td>
</tr>
<tr>
<td>PWM output period</td>
<td>PWM_{Tdef}</td>
<td>Factory default, internal oscillator factory calibrated</td>
<td>1.024</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>PWM period stability</td>
<td>$dPWM_T$</td>
<td>Internal oscillator factory calibrated, over the entire operation range and supply voltage</td>
<td>-4</td>
<td></td>
<td>+4</td>
<td>%</td>
</tr>
<tr>
<td>Output high Level</td>
<td>PWM_{He}</td>
<td>$I_{source} = 2 , mA$</td>
<td></td>
<td></td>
<td>$V_{DD} - 0.25$</td>
<td>V</td>
</tr>
<tr>
<td>Output low Level</td>
<td>PWM_{LO}</td>
<td>$I_{sink} = 2 , mA$</td>
<td></td>
<td></td>
<td>$V_{SS} + 0.25$</td>
<td>V</td>
</tr>
<tr>
<td>Output drive current</td>
<td>$I_{driveww}$</td>
<td>$V_{out,H} = V_{DD} - 0.8V$</td>
<td>15</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Output sink current</td>
<td>$I_{sinkPWM}$</td>
<td>$V_{out,L} = 0.8V$</td>
<td>15</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Output settling time</td>
<td>T_{set}</td>
<td>100 pF capacitive load, full operating T_a range</td>
<td>150</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Output settling time</td>
<td>T_{set}_{RC}</td>
<td>220 Ohm in series with 47 nF load on the wire, full T_a operating range</td>
<td>500</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMBus compatible 2-wire interface<sup>*</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input high voltage</td>
<td>(V_{IH})</td>
<td>Over temperature and supply</td>
<td>1.6</td>
<td>2</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>Input high voltage</td>
<td>(V_{IH}(T_a,V))</td>
<td>Over temperature and supply</td>
<td>1.2</td>
<td>2</td>
<td>2.8</td>
<td>V</td>
</tr>
<tr>
<td>Input low voltage</td>
<td>(V_{IL})</td>
<td>Over temperature and supply</td>
<td>0.7</td>
<td>1.0</td>
<td>1.3</td>
<td>V</td>
</tr>
<tr>
<td>Input low voltage</td>
<td>(V_{IL}(T_a,V))</td>
<td>Over temperature and supply</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>Output low voltage</td>
<td>(V_{OL})</td>
<td>SDA pin in open drain mode, over temperature and supply, (I_{sink} = 2mA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCL leakage</td>
<td>(I_{SCL,leak})</td>
<td>(V_{SCL}=3V, T_a=+85°C)</td>
<td>20</td>
<td></td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>SDA leakage</td>
<td>(I_{SDA,leak})</td>
<td>(V_{SDA}=3V, T_a=+85°C)</td>
<td>0.25</td>
<td></td>
<td></td>
<td>uA</td>
</tr>
<tr>
<td>SCL capacitance</td>
<td>(C_{SCL})</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>SDA capacitance</td>
<td>(C_{SDA})</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Slave address</td>
<td>(SA)</td>
<td>Factory default</td>
<td>5Ah</td>
<td></td>
<td></td>
<td>hex</td>
</tr>
<tr>
<td>SMBus Request</td>
<td>(I_{REQ})</td>
<td>SCL low</td>
<td>1.024</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Timeout, low</td>
<td>(T_{INQUL, L})</td>
<td>SCL low</td>
<td>30</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Timeout, high</td>
<td>(T_{INQUL, H})</td>
<td>SCL high</td>
<td>50</td>
<td></td>
<td></td>
<td>us</td>
</tr>
<tr>
<td>Acknowledge setup</td>
<td>(T_{Suac, MD})</td>
<td>8-th SCL falling edge, Master</td>
<td>0.5</td>
<td>1.5</td>
<td></td>
<td>us</td>
</tr>
<tr>
<td>Acknowledge hold</td>
<td>(T_{ndac, MD})</td>
<td>9-th SCL falling edge, Master</td>
<td>1.5</td>
<td>2.5</td>
<td></td>
<td>us</td>
</tr>
<tr>
<td>Acknowledge setup</td>
<td>(T_{Suac, SD})</td>
<td>8-th SCL falling edge, Slave</td>
<td>2.5</td>
<td></td>
<td></td>
<td>us</td>
</tr>
<tr>
<td>Acknowledge hold</td>
<td>(T_{ndac, SD})</td>
<td>9-th SCL falling edge, Slave</td>
<td>1.5</td>
<td></td>
<td></td>
<td>us</td>
</tr>
<tr>
<td>EEPROM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data retention</td>
<td></td>
<td>Ta = +85°C</td>
<td>10</td>
<td></td>
<td></td>
<td>years</td>
</tr>
<tr>
<td>Erase/write cycles</td>
<td></td>
<td>Ta = +25°C</td>
<td>100,000</td>
<td></td>
<td></td>
<td>Times</td>
</tr>
<tr>
<td>Erase/write cycles</td>
<td></td>
<td>Ta = +125°C</td>
<td>10,000</td>
<td></td>
<td></td>
<td>Times</td>
</tr>
<tr>
<td>Erase cell time</td>
<td></td>
<td>(T_{erase})</td>
<td>5</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Write cell time</td>
<td></td>
<td>(T_{write})</td>
<td>5</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
</tbody>
</table>

Note: refer to MLX90614Axx notes.
7 Detailed description

7.1 Block diagram

![Block diagram](image)

Figure 3: block diagram

7.2 Signal processing principle

The operation of the MLX90614 is controlled by an internal state machine, which controls the measurements and calculations of the object and ambient temperatures and does the post-processing of the temperatures to output them through the PWM output or the SMBus compatible interface.

The ASSP supports 2 IR sensors (second one not implemented in the MLX90614xAx). The output of the IR sensors is amplified by a low noise low offset chopper amplifier with programmable gain, converted by a Sigma Delta modulator to a single bit stream and fed to a powerful DSP for further processing. The signal is treated by programmable (by means of EEPROM contend) FIR and IIR low pass filters for further reduction of the band width of the input signal to achieve the desired noise performance and refresh rate. The output of the IIR filter is the measurement result and is available in the internal RAM. 3 different cells are available: One for the on-board temperature sensor (on chip PTAT or PTC) and 2 for the IR sensors.

Based on results of the above measurements, the corresponding ambient temperature T_a and object temperatures T_o are calculated. Both calculated temperatures have a resolution of 0.01 °C. The data for T_a and T_o can be read in two ways: Reading RAM cells dedicated for this purpose via the 2-wire interface (0.02 °C resolution, fixed ranges), or through the PWM digital output (10 bit resolution, configurable range).

In the last step of the measurement cycle, the measured T_a and T_o are rescaled to the desired output resolution of the PWM and the recalculated data is loaded in the registers of the PWM state machine, which creates a constant frequency with a duty cycle representing the measured data.
7.3 Block description

7.3.1 Amplifier

A low noise low offset amplifier with programmable gain is implemented for amplification of the IR sensor voltage. With a carefully designed input modulator and balanced input impedance, an offset as low as 0.5 μV is achieved.

7.3.2 Supply regulator and POR

The module can operate from 2 different supplies:

- VDD=5V => MLX90614Axx
- VDD=3.3V => MLX90614Bxx (battery or regulated supply)

Refer to "Applications information" section for information about adopting higher voltage supplies.

The Power On Reset (POR) is connected to Vdd supply. The on-chip POR circuit provides an active (high) level of the POR signal when the Vdd voltage rises above approximately 0.5V and holds the entire MLX90614xxx in reset until the Vdd is higher than the specified POR threshold V_{POR} (note that this level is different for MLX90614Axx and MLX90614Bxx). During the time POR is active, the POR signal is available as an open drain (active high) at the PWM/SDA pin. After the MLX90614xxx exits the POR condition, the function programmed in EEPROM takes precedence for that pin.

7.3.3 EEPROM

A limited number of addresses in the EEPROM memory can be changed by the customer. The whole EEPROM can be read via SMBus interface.

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Write acces</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{max}</td>
<td>000h</td>
<td>Yes</td>
</tr>
<tr>
<td>T_{min}</td>
<td>001h</td>
<td>Yes</td>
</tr>
<tr>
<td>PWMCTRL</td>
<td>002h</td>
<td>Yes</td>
</tr>
<tr>
<td>Ta range</td>
<td>003h</td>
<td>Yes</td>
</tr>
<tr>
<td>Ke</td>
<td>004h</td>
<td>Yes</td>
</tr>
<tr>
<td>Config Register1</td>
<td>005h</td>
<td>Yes</td>
</tr>
<tr>
<td>Melexis reserved</td>
<td>006h</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>00Dh</td>
<td>No</td>
</tr>
<tr>
<td>SMBus address</td>
<td>00Eh</td>
<td>Yes</td>
</tr>
<tr>
<td>Melexis reserved</td>
<td>00Fh</td>
<td>Yes</td>
</tr>
<tr>
<td>Melexis reserved</td>
<td>010h</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>018h</td>
<td>No</td>
</tr>
<tr>
<td>Melexis reserved</td>
<td>019h</td>
<td>Yes</td>
</tr>
<tr>
<td>Melexis reserved</td>
<td>01Ah</td>
<td>No</td>
</tr>
<tr>
<td>Melexis reserved</td>
<td>01Bh</td>
<td>No</td>
</tr>
<tr>
<td>ID number</td>
<td>01Ch</td>
<td>No</td>
</tr>
<tr>
<td>ID number</td>
<td>01Dh</td>
<td>No</td>
</tr>
<tr>
<td>ID number</td>
<td>01Eh</td>
<td>No</td>
</tr>
<tr>
<td>ID number</td>
<td>01Fh</td>
<td>No</td>
</tr>
</tbody>
</table>

The addresses T_{max}, T_{min} and Ta range are for customer dependent object and ambient temperature ranges. For details see point 7.5.3 below in this document.
The address **PWMCTRL** consists of control bits for configuring the PWM/SDA pin:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value 1</th>
<th>Value 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Select the type of PWM mode:</td>
<td>Single PWM, factory default for MLX90614xA</td>
<td>Extended PWM, factory default for MLX90614xB</td>
</tr>
<tr>
<td>1</td>
<td>Enable/disable the PWM:</td>
<td>Enable PWM, disable SMBus</td>
<td>Disable PWM (Enable SMBus), Factory default</td>
</tr>
<tr>
<td>2</td>
<td>Configuration of the pin PWM:</td>
<td>Push-Pull,</td>
<td>Open Drain NMOS, factory default</td>
</tr>
<tr>
<td>3</td>
<td>Mode selection</td>
<td>ThermomRelay,</td>
<td>PWM, Factory default</td>
</tr>
<tr>
<td>[8:4]</td>
<td>Extended PWM definition</td>
<td>Number of repetitions divided by 2 of sensor 1 and 2 in Extended PWM mode. The number of repetitions can vary from 0 to 64 times.</td>
<td></td>
</tr>
<tr>
<td>[15:9]</td>
<td>PWM clock configuration</td>
<td>2MHz divided by number written in this place. (128 in case the number is 0.) A single PWM period consists of 2048 clocks and extended PWM of 4096 clocks for each period (2T in figure 6). The 2 MHz clock is valid for the nominal HFO frequency.</td>
<td></td>
</tr>
</tbody>
</table>

The address **ConfigRegister1** consists of control bits for configuring the analog and digital parts:

<table>
<thead>
<tr>
<th>Bits[2:0]</th>
<th>– Configure coefficients of IIR digital filter:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 2</td>
<td>Bit 1</td>
</tr>
<tr>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits[3]</th>
<th>– Configure the type of ambient temperature sensor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PTC,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits[5:4]</th>
<th>– Configure the type of data transmitted through PWM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 5</td>
<td>Bit 4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits[6]</th>
<th>– Define the number IR sensors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 sensors,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits[7]</th>
<th>– Define the sign Ks (Ks=dAlpha/dTobj) :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory calibration, do not alter</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits[10:8]</th>
<th>– Configure coefficient N of FIR digital filter:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 10</td>
<td>Bit 9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits[13:11]</th>
<th>– Configure the gain of amplifier:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 13</td>
<td>Bit 12</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Bit 14	Unused	
Bit 15	– Define the sign of thermo-shock compensation:	
1	negative,	0 – positive.

*Note: The following bits/registers should not be altered (except with special tools – contact Melexis for such tools availability) in order to keep the factory calibration relevant: Ke [15..0] ; Config Register1 [13..11;7;3] ; addresses 00Fh and 019h. * not recommended for extended PWM mode*
7.3.4 RAM

It is not possible to write into the RAM memory. It can only be read and only a limited number of RAM registers are of interest to the customer.

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Read access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melexis reserved</td>
<td>000h</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Melexis reserved</td>
<td>005h</td>
<td>Yes</td>
</tr>
<tr>
<td>T_A</td>
<td>006h</td>
<td>Yes</td>
</tr>
<tr>
<td>T_OBJ1</td>
<td>007h</td>
<td>Yes</td>
</tr>
<tr>
<td>T_OBJ2</td>
<td>008h</td>
<td>Yes</td>
</tr>
<tr>
<td>Melexis reserved</td>
<td>009h</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Melexis reserved</td>
<td>01Fh</td>
<td>Yes</td>
</tr>
</tbody>
</table>

7.4 SMBus compatible 2-wire protocol

The chip supports a 2 wires serial protocol, built with pins PWM/SDA and SCL.

- **SCL** – digital input, used as the clock for SMBus compatible communication. This pin has the auxiliary function for building an external voltage regulator. When the external voltage regulator is used, the 2-wire protocol is available only if the power supply regulator is overdriven.
- **PWM/SDA** – Digital input/output, used for both the PWM output of the measured object temperature(s) or the digital input/output for the SMBus. The pin can be programmed in EEPROM to operate as Push/Pull or open drain NMOS (open drain NMOS is factory default).

7.4.1 Functional description

The SMBus interface is a 2-wire protocol, allowing communication between the Master Device (MD) and one or more Slave Devices (SD). In the system only one master can be presented at any given time [1]. The MLX90614 can only be used as a slave device.

Generally, the MD initiates the start of data transfer by selecting a SD through the Slave Address (SA).

The MD has read access to the RAM and EEPROM and write access to 9 EEPROM cells (at addresses 0x20h, 0x21h, 0x22h, 0x23h, 0x24h, 0x25h*, 0x2Eh, 0x2Fh, 0x39h). If the access to the MLX90614 is a read operation it will respond with 16 data bits and 8 bit PEC only if its own slave address, programmed in internal EEPROM, is equal to the SA, sent by the master. The SA feature allows connecting up to 127 devices with only 2 wires, unless the system has some of the specific features described in paragraph 5.2 of reference [1]. In order to provide access to any device or to assign an address to a SD before it is connected to the bus system, the communication must start with zero SA followed by low RWB bit. When this command is sent from the MD, the MLX90614 will always respond and will ignore the internal chip code information.

Special care must be taken not to put two MLX90614 devices with the same SD addresses on the same bus as MLX90614 does not support ARP[1].

The MD can force the MLX90614 into low consumption mode “sleep mode” (3V version only). Read flags like “EEBUSY” (1 – EEPROM is busy with executing the previous write/erase), “EE_DEAD” (1 – there is fatal EEPROM error and this chip is not functional**).

Note: This address is readable and writable. Bit 3 should not be altered as this will cancel the factory calibration.

Note: EEPROM error signalling is implemented in automotive grade parts only.
7.4.2 Differences with the standard SMBus specification (reference [1])

There are eleven command protocols for standard SMBus interface. The MLX90614 supports only two of them. Not supported commands are:
- Quick Command
- Byte commands - Sent Byte, Receive Byte, Write Byte and Read Byte
- Process Call
- Block commands – Block Write and Write-Block Read Process Call

Supported commands are:
- Read Word
- Write Word

7.4.3 Detailed description

The PWM/SDA pin of MLX90614 can operate also as PWM output, depending on the EEPROM settings. If PWM is enabled, after POR the PWM/SDA pin is directly configured as PWM output. The PWM mode can be avoided and the pin can be restored to its Data function by a special command. That is why hereafter both modes are treated separately.

7.4.3.1 Bus Protocol

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>7</th>
<th>1</th>
<th>1</th>
<th>8</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Slave Address</td>
<td>Wr A</td>
<td>Data Byte</td>
<td>A P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S: Start Condition
Sr: Repeated Start Condition
Rd: Read (bit value of 1)
Wr: Write (bit value of 0)
A: Acknowledge (this bit can be 0 for ACK and 1 for NACK)
S: Stop Condition
PEC: Packet Error Code

Figure 4: SMBus packet element key

After every 8 bits received by the SD an ACK/NACK takes place. When a MD initiates communication, it first sends the address of the slave and only the SD which recognizes the address will ACK the rest will remain silent. If the SD NACKs one of the bytes, the MD should stop the communication and repeat the message. A NACK could be received after the PEC. This means that there is error in the received message and the MD should try sending the message again. The PEC calculation includes all bits except the START, REPEATED START, STOP, ACK, and NACK bits. The PEC is a CRC-8 with polynomial $X^8 + X^2 + X + 1$. The Most Significant Bit of every byte is transferred first.
7.4.3.1.1 Read Word (depending on the command – RAM or EEPROM)

![Figure 5: SMBus read word format](image)

7.4.3.1.2 Write Word (depending on the command – RAM or EEPROM)

![Figure 6: SMBus write word format](image)

7.4.4 AC specification for SMBus

7.4.4.1 Timing

The MLX90614 meets all the timing specifications of the SMBus [1]. The maximum frequency of the MLX90614 SMBus is 100KHz and the minimum is 10KHz.

The specific timings in MLX90614’s SMBus are:

- **SMBus Request (tREQ)** is the time that the SCL should be forced low in order to switch MLX90614 from PWM mode to SMBus mode;
- **Timeout L** is the maximum allowed time for SCL to be low. After this time the MLX90614 will reset its communication block and will be ready for new communication;
- **Timeout H** is the maximum time for which it is allowed for SCL to be high during communication. After this time MLX90614 will reset its communication block assuming that the bus is idle (according to the SMBus specification);
- **Tsuac(SD)** is the time after the eighth falling edge of SCL that MLX90614 will force PWM/SDA low to acknowledge the last received byte.
- **Thdac(SD)** is the time after the ninth falling edge of SCL that MLX90614 will release the PWM/SDA (so the MD can continue with the communication).
- **Tsuac(MD)** is the time after the eighth falling edge of SCL that MLX90614 will release PWM/SDA (so that the MD can acknowledge the last received byte).
- **Thdac(MD)** is the time after the ninth falling edge of SCL that MLX90614 will take control of the PWM/SDA (so it can continue with the next byte to transmit).
The indexes MD and SD for the latest timings are used – MD when the master device is making acknowledge; SD when the slave device is making acknowledge). For other timings see [1].

![SMBus timing](image)

7.4.5 Bit transfer

The data on PWM/SDA must be changed when SCL is low (min 300ns after the falling edge of SCL). The data is fetched by both MD and SDs on the rising edge of the SCL.

![Bit transfer on SMBus](image)

7.4.6 Commands

In application mode RAM and EEPROM can be read both with 32x16 sizes. If the RAM is read, the data are divided by two, due to a sign bit in RAM (for example, T_{OBJ1} – RAM address 0x07h will sweep between 0x27ADh to 0x7FFF as the object temperature rises from -70.01°C to +382.19°C). The MSB read from RAM is an error flag (active high) for the linearized temperatures (T_{OBJ1}, T_{OBJ2} and T_a). The MSB for the raw data (e.g. IR sensor1 data) is a sign bit (sign and magnitude format).

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>000x xxxx*</td>
<td>RAM Access</td>
</tr>
<tr>
<td>001x xxxx*</td>
<td>EEPROM Access</td>
</tr>
<tr>
<td>1111_0000**</td>
<td>Read Flags</td>
</tr>
<tr>
<td>1111_1111</td>
<td>Enter SLEEP mode</td>
</tr>
</tbody>
</table>

Note: The xxxx are the 5 LSBits of the memory map address to be read/written.
*Note**: Behaves like read command. The MLX90614 returns PEC after 16 bits data of which only 4 are meaningful and if the MD wants it, it can stop the communication after the first byte. The difference between read and read flags is that the latter does not have a repeated start bit.

Flags read are:
- Data[14] – Unused
- Data[10..0] – all zeros.

Flags read is a diagnostic feature. The MLX90614 can be used regardless of these flags.
7.4.7 Sleep Mode

MLX90614 can enter Sleep Mode via command “Enter SLEEP mode” sent via the SMBus interface. This mode is not available for the 5V supply version. To limit the current consumption to 2.5uA (typ), the SCL pin should be kept low during sleep. MLX90614 goes back into power-up default mode (via POR reset) by setting SCL pin high and then PWM/SDA pin low for at least $t_{DDq}=13$ ms. If EEPROM is configured for PWM (EN_PWM is high), the PWM interface will be selected after awakening and if PWM control [2], PPODB is 1 the MLX90614 will output a PWM pulse train with push-pull output.

7.4.7.1 Enter Sleep Mode

![Diagram showing Sleep Mode transition]

7.4.7.2 Exit from Sleep Mode

![Diagram showing Exit from Sleep Mode]

Figure 9: Enter sleep

Figure 10: Exit Sleep Mode
7.5 PWM

The MLX90614 can be read via PWM or SMBus compatible interface. Selection of PWM output is done in EEPROM configuration (factory default is PWM). PWM output has two programmable formats, single and dual data transmission, providing single wire reading of two temperatures (dual zone object or object and ambient). The PWM period is derived from the on-chip oscillator and is programmable.

<table>
<thead>
<tr>
<th>Config Register[5:4]</th>
<th>PWM1 data</th>
<th>PWM2 data</th>
<th>Tmin,1</th>
<th>Tmax,1</th>
<th>Tmin,2</th>
<th>Tmax,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Ta</td>
<td>Tobj1</td>
<td>Tmin,1</td>
<td>Tmax,1</td>
<td>Tmin,1</td>
<td>Tmax,1</td>
</tr>
<tr>
<td>01</td>
<td>Ta</td>
<td>Tobj2</td>
<td>Tmin,1</td>
<td>Tmax,1</td>
<td>Tmin,1</td>
<td>Tmax,1</td>
</tr>
<tr>
<td>11</td>
<td>Tobj1</td>
<td>Tobj2</td>
<td>Tmin</td>
<td>Tmax</td>
<td>Tmin</td>
<td>Tmax</td>
</tr>
<tr>
<td>10*</td>
<td>Tobj2</td>
<td>Undefined</td>
<td>Tmin</td>
<td>Tmax</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Note: Serial data functions (2-wire / PWM) are multiplexed with a thermal relay function (described in the "Thermal relay" section).

* not recommended for extended PWM format operation

![Figure 11: PWM timing](image)

7.5.1 Single PWM format

In single PWM output mode the settings for PWM1 data only are used. The temperature reading can be calculated from the signal timing as:

\[
T_{\text{out}} = \left[\frac{2t_2}{T} \times (T_{\text{max}} - T_{\text{min}}) \right] + T_{\text{min}},
\]

where Tmin and Tmax are the corresponding rescale coefficients in EEPROM for the selected temperature output (Ta, object temperature range is valid for both Tobj1 and Tobj2 as specified in the previous table) and T is the PWM period. Tout is Tobj1, Tobj2 or Ta according to Config Register [5:4] settings.
Therefore a PWM pulse train with a duty cycle of 0.875 will indicate a fatal error in EEPROM (for single PWM format).

Captured PWM high duration is 0.495*T => t will be repeated 2N+1 times, where N is the decimal value of the number written in DUAL[5:1] (To = PWM control & clock [8:4]).

Example:

T_{obj1} => Config Reg[5:4] = 11'b
T_{min} = 0°C => T_{min} [EEPROM] = 100 * (T_{min} + 273.15) = 6AB3h
T_{max} = +50°C => T_{max} [EEPROM] = 100 * (T_{max} + 273.15) = 7E3Bh

Captured PWM high duration is 0.495*T => t = (0.495 - 0.125)*T = 0.370*T => measured object temperature = 2*0.370°(50°C - 0°C) + 0°C = ±37.0°C.

7.5.2 Extended PWM format

The PWM format for extended PWM is shown in Figure 11. Note that with bits DUAL[5:1]>00h each period will be repeated 2N+1 times, where N is the decimal value of the number written in DUAL[5:1] (DUAL[5:1] = PWM control & clock [8:4]), like shown on Figure 12.

![Figure 12: Extended PWM format with DUAL[5:1] = 01h (2 repetitions for each data)](image)

The temperature transmitted in Data 1 field can be calculated using the following equation:

\[T_{out1} = \left[\frac{2t_2}{T} \times (T_{max1} - T_{min1}) \right] + T_{min1} \]

For Data 2 field the equation is:

\[T_{out2} = \left[\frac{2t_2}{T} \times (T_{max2} - T_{min2}) \right] + T_{min2} \]

Where T_{min1}, T_{max1}, T_{min2}, and T_{max2} are given in Table 9. t_1 = t_{high1} - t_1, and t_2 = t_{high2} - t_2.

Time bands are: t_1 = 0.125*T, t_2 = 0.25*T and t_4 = 1.125*T. As shown in Figure 11, in extended PWM format the period is twice the period for the single PWM format. All equations provided herein are given for the single PWM period T. The EEPROM Error band signalling will be 43.75% duty cycle for Data1 and 93.75% for Data2.

Note: EEPROM error signalling is implemented in automotive grade parts only.

Example:

Configuration: To = T_{obj1} @ Data1 : Data2 => Config Reg[5:4] = 00b,
T_{min} = -5°C => T_{range, L} [EEPROM] = 100*(T_{min}+38.2)/64 = 33h,
T_{max} = +105°C => T_{range, H} [EEPROM] = 100*(T_{max}+38.2)/64 = DFh,
T_{range} [EEPROM] = DF33h
T_{min} = 0°C => T_{min} [EEPROM] = 100 * (T_{min} + 273.15)/64 = 6AB3h
T_{max} = +50°C => T_{max} [EEPROM] = 100 * (T_{max} + 273.15)/64 = 7E3Bh

Captured high durations are 0.13068°(2T) and 0.7475°(2T), where 2T is each captured PWM period. Time band t_4 is provided for reliable determination between Data1 and Data2 data fields. Thus Data1 is represented by 0.13068°(2T) and Data2 = by 0.7475°(2T), and the temperatures can be calculated as follows:

\[t_4/T = (t_{high}/T) \times 0.125 = 0.13636 => T_a = +25.0°C, \]
\[t_4/T = (t_{high}/T) \times 1.125 = 0.370 => T_{obj} = +37.0°C. \]
7.5.3 Customizing the temperature range for PWM output

The calculated ambient and object temperatures are stored in RAM with a resolution of 0.01 °C (16 bit). The PWM operates with a 10-bit word so the transmitted temperature is rescaled in order to fit in the desired range.

For this goal 2 cells in EEPROM are foreseen to store the desired range for To (To\text{min} and To\text{max}) and one for Ta (Ta\text{range}: the 8MSB are foreseen for Ta\text{max} and the 8LSB for Ta\text{min}). Thus the output range for To can be programmed with an accuracy of 0.01 °C, while the corresponding Ta range can be programmed with an accuracy of 2.56 °C.

The object data for PWM is rescaled according to the following equation:

$$T_{PWM_{\text{obj}}} = \frac{T_{\text{RAM}} - T_{\text{MIN}_{\text{EEPROM}}}}{K_{PWM_{\text{obj}}}} = \frac{T_{\text{MAX}_{\text{EEPROM}}} - T_{\text{MIN}_{\text{EEPROM}}}}{1023}$$

The T_{RAM} is the linearised T_{obj}, 16-bit (0000...FFFFh, 0000 for -273.15°C and FFFFh for +382.2°C) and the result is a 10-bit word, in which 000h corresponds to $T_{\text{MIN}_{\text{EEPROM}}}$[°C], 3FFh corresponds to $T_{\text{MAX}_{\text{EEPROM}}}$[°C] and 1LSB corresponds to $\frac{T_{\text{MAX}} - T_{\text{MIN}}}{1023}$[°C]

$T_{\text{MIN}_{\text{EEPROM}}} = T_{\text{MIN}} \times 100\text{ LSB}$

$T_{\text{MAX}_{\text{EEPROM}}} = T_{\text{MAX}} \times 100\text{ LSB}$

The ambient data for PWM is rescaled according to the following equation:

$$T_{PWM_{\text{ambient}}} = \frac{T_{\text{RAM}} - T_{\text{MIN}_{\text{EEPROM}}}}{K_{PWM_{\text{ambient}}}} = \frac{T_{\text{MAX}_{\text{EEPROM}}} - T_{\text{MIN}_{\text{EEPROM}}}}{1023}$$

The result is a 10-bit word, where 000h corresponds to -38.2 °C (lowest Ta that can be read via PWM), 3FFh corresponds to 125 °C (highest Ta that can be read via PWM) and 1LSB corresponds to $\frac{T_{\text{MAX}} - T_{\text{MIN}}}{1023}$[°C]

$T_{\text{MIN}_{\text{EEPROM}}} = [T_{\text{MIN}} - (\text{-38.2})] \times \frac{100}{64}\text{ LSB}$

$T_{\text{MAX}_{\text{EEPROM}}} = [T_{\text{MAX}} - (\text{-38.2})] \times \frac{100}{64}\text{ LSB}$
7.6 Switching Between PWM and SMBus communication

7.6.1 PWM is enabled

The diagram below illustrates the way of switching to SMBus if PWM is enabled (factory programmed POR default for MLX90614 is SMBus, PWM enabled). Note that the SCL pin needs to be kept high in order to use PWM.

![Diagram illustrating switching from PWM mode to SMBus](image)

Figure 13: Switching from PWM mode to SMBus

7.6.2 Request condition

If PWM is enabled, the MLX90614’s SMBus Request condition is needed to disable PWM and reconfigure PWM/SDA pin before starting SMBus communication. Once disabled PWM, it can be only enabled by switching Off-On of the supply or exit from Sleep Mode. The MLX90614’s SMBus request condition requires forcing LOW the SCL pin for period longer than the request time (t_{REQ}). The SDA line value is ignored in this case.

7.6.3 PWM is disabled

If PWM is disabled by means of EEPROM the PWM/SDA pin is directly used for the SMBus purposes after POR. **Request condition should not be sent in this case.**
7.7 Computation of ambient and object temperatures

The IR sensor consists of serial connected thermo-couples with cold junctions placed at thick chip substrate and hot junctions, placed over thin membrane. The IR radiation absorbed from the membrane heats (or cools) it. The thermopile output signal is

\[V_{ir}(Ta, To) = A(To^4 - Ta^4), \]

Where \(To \) is the object temperature absolute (Kelvin) temperature, \(Ta \) is the sensor die absolute (Kelvin) temperature, and \(A \) is the overall sensitivity.

An additional temperature sensor is needed for measuring the temperature of the chip temperature. After measurement of the output of both sensors, the corresponding ambient and object temperatures can be calculated. These calculations are done by the internal DSP, which produces digital outputs, linearly proportional to measured temperatures.

7.7.1 Ambient temperature \(Ta \)

The Sensor die temperature is measured with a PTC or a PTAT element. All the sensors’ conditioning and data processing is handled on-chip and the linearized sensor die temperature \(Ta \) is made available in memory.

The resolution of the calculated \(Ta \) is 0.01 °C. The sensor is factory calibrated for the full automotive range (-40 to 125 °C). In RAM cell 006h, 0000h corresponds to -40 °C and 4074h (16500d) corresponds to 125 °C. The conversions from RAM contend to real \(Ta \) is easy using the following relation:

\[Ta[°K] = Tareg \times 0.01 \]

Note that via SMBus \(Ta \) is read divided by 2, or \(Ta,SMBus[°K] = Tareg \times 0.02 \)

7.7.2 Object temperature \(To \)

The result has a resolution of 0.01 °C and is available in RAM. \(To \) is derived from RAM as:

\[To[°K] = Toreg \times 0.01 \]

Note that via SMBus \(To \) is read divided by 2, or \(To,SMBus[°K] = Toreg \times 0.02 \)

7.7.3 Calculation flow

The measurement, calculation and linearization are held by core, which executes a program from ROM. After POR the chip is initialized with calibration data from EEPROM. During this phase the number of IR sensor is selected and which temperature sensor will be used. Measurements, compensation and linearization routines run in a closed loop afterwards.

Processing ambient temperature includes:
- Offset measurement with fixed length FIR filter
- Additional filtering with fixed length IIR filter. The result is stored into RAM as \(T_{os} \)
- Temperature sensor measurement using programmable length FIR.
- Offset compensation
- Additional processing with programmable length IIR. The result is stored into RAM as \(T_{d} \).
- Calculation of the ambient temperature. The result is stored into RAM as \(Ta \).

Processing of the object temperature consists of three parts. The first one is common for both IR sensors, the third part can be skipped if only one IR sensor is used.

IR offset:
- Offset measurement with a fixed length FIR
- Additional filtering with a fixed length IIR. The result is stored into RAM as \(IR_{os} \).
Gain measurement with fixed length FIR filter
Offset compensation
Additional gain filtering with fixed length IIR, storing the result into RAM as IRG.
Gain compensation calculation, the result is stored into RAM as KG.

Object temperature:
IR1 sensor:
- IR sensor measurement with programmable length FIR filter *.
- Offset compensation
- Gain compensation
- Filtering with programmable length IIR filter**, storing the result into RAM as IR1D.
- Calculation of the object temperature. The result is available in RAM as TOBJ1.

IR2 sensor:
- IR sensor measurement with programmable length FIR filter *.
- Offset compensation
- Gain compensation
- Filtering with programmable length IIR filter**, storing the result into RAM as IR2D.
- Calculation of the object temperature. The result is available in RAM as TOBJ2.

PWM calculation:
- Recalculate the data for PWM with 10 bit resolution
- Load data into PWM module

Note*: The measurements with programmable filter length for FIR filter use the same EEPROM's sell for N.
Note**: The IIR filter with programmable filter length uses the same EEPROM's sell for L.
7.8 Thermal relay

The MLX90614 can be configured to behave as a thermo relay with programmable threshold and hysteresis on the PWM/SDA pin. The input for the comparator unit of the relay is the object temperature from sensor 1. The output of the MLX90614 is NOT a relay driver but a logical output which should be connected to a relay driver if necessary.

In order to configure the MLX90614 to work as thermal relay two conditions must be met:
- Set bit TRPWMB high at address 002h in EEPROM
- Enable PWM output i.e. EN_PWM is set high

The PWM/SDA pin can be programmed as a push-pull or open drain NMOS (via bit PPODB in EEPROM PWMCTRL), which can trigger an external device. The temperature threshold data is determined by EEPROM at address 021h (Tomin) and the hysteresis at address 020h (Tomin).

The logical state of the PWM/SDA pin is as follows:

- PWM/SDA pin is high if $T_{obj} \geq \text{threshold} + \text{hysteresis}$
- PWM/SDA pin is low if $T_{obj} \leq \text{threshold} - \text{hysteresis}$

The MLX90614 preserves its normal operation when configured as a thermal relay (PWM configuration and specification applies as a general rule also for the thermal relay) and therefore it can be read using the SMBus (entering the SMBus mode from both PWM and thermal relay configuration is the same).

For example, the MLX90614 can generate a wake-up alert for a system upon reaching a certain temperature and then be read as a thermometer. A reset condition (enter-and-exit Sleep, for example) will be needed in order to return to the thermal relay configuration.

Example: threshold 5 °C => $(5 + 273.15) \times 100 = 27815 = 6CA7h$

hysteresis is 1°C => $1 \times 100 = 100 = 64h$

PWM/SDA pin will be low at object temperature below 4 °C

PWM/SDA pin will be high at object temperature higher that 6 °C

8 Unique Features

The MLX90614 is a ready-to-use low-cost non contact thermometer provided from Melexis with output data linearly dependent on the object temperature with high accuracy and extended resolution.

It supports versatile customization to a very wide range of temperatures, power supplies and refresh rates.

The user can program the internal object emissivity correction for objects with a low emissivity. An embedded error checking and correction mechanism provides high memory reliability.

The sensors is housed in an industry standard TO39 package for both single- and dual-zone IR thermometers. The thermometer is available in automotive grade and can use two different packages for wider applications’ coverage.

The low power consumption and sleep mode make the thermometer ideally suited for handheld mobile applications.

The digital sensor interface can be either a power-up-and-measure PWM or an enhanced access SMBus compatible protocol. Systems with more than 100 devices can be built with only two signal lines. Dual zone non contact temperatures measurements available via a single line (extended PWM).

A built-in thermal relay function further extends the easy implementation of wide variety of freezing/boiling prevention and alert systems, as well as thermostats (no MCU is needed).
9 Performance Graphs

9.1 Temperature accuracy of the MLX90601AAA

Figure 17: Preliminary accuracy of MLX90601AAA (Ta,To)

All accuracy specifications apply under settled isothermal conditions only.
A version of the MLX90614 with accuracy suited for medical applications is available upon request. The accuracy in the range $T_a \, 10^{\circ}C - 40^{\circ}C$ and $T_o \, 32^{\circ}C - 42^{\circ}C$ is shown in diagram below. The accuracy for the rest ranges is same as in previous diagram.

Figure 18: Preliminary accuracy of MLX90601BAA (T_a,T_o) for medical applications.
9.2 Field Of View (FOV)

Field of view is determined at 50% thermopile signal and with respect to the sensor main axis.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MLX90614xAA</th>
<th>MLX90614xAB</th>
<th>MLX90614xBA</th>
<th>MLX90614xBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak zone 1</td>
<td>±0°</td>
<td>±0</td>
<td>-25°</td>
<td>-30°</td>
</tr>
<tr>
<td>Width zone 1</td>
<td>72°</td>
<td>80°</td>
<td>70°</td>
<td>70°</td>
</tr>
<tr>
<td>Peak zone 2</td>
<td></td>
<td></td>
<td>-25°</td>
<td>+30°</td>
</tr>
<tr>
<td>Width zone 2</td>
<td></td>
<td></td>
<td>70°</td>
<td>70°</td>
</tr>
</tbody>
</table>

Figure 19: FOV of MLX90614xAA

Figure 20: FOV of MLX90614xBA

Figure 21: Identification of zone 1&2 relative to alignment tab.
10 Applications Information

10.1 Use of the MLX90614 thermometer in SMBus configuration

![Connection of MLX90614 to SMBus, 3.3V power supply.](image)

The MLX90614 has diode clamps SDA/SCL to Vdd so it is necessary to provide MLX90614 with power in order not to load the SMBus lines.

10.2 Use of multiple MLX90614s in SMBus configuration

![SMBus configuration of multiple sensors.](image)

The MLX90614 supports a 7-bit slave address in EEPROM, thus allowing up to 127 devices to be read via two common wires. With the MLX90614BBx this results in 254 object temperatures measured remotely and an additional 127 ambient temperatures which are also available. Current source pull-ups may be preferred with higher capacitive loading on the bus (C3 and C4 represent the lines' parasitics), while simple resistive pull-ups provide the obvious low cost advantage.
10.3 Thermal alert / thermostat

The MLX90614 can be configured in EEPROM to operate as a thermal relay. A non contact freezing or boiling prevention with 1 mA quiescent current can be built with two components only – the MLX90614 and a capacitor. The PWM/SDA pin can be programmed as a push-pull or open drain NMOS, which can trigger external device, such as a relay (refer to electrical specifications for load capability), buzzer, RF transmitter or a LED. This feature allows very simple thermostats to be built without the need of any MCU and zero design overhead required for firmware development. In conjunction with a MCU, this function can operate as a system alert that wakes up the MCU. Both object temperature and sensor die temperature can be also read in this configuration.

10.4 High voltage source operation

As a standard, the module MLX90614Axx works with a supply voltage of 5Volt. In addition, thanks to the integrated internal reference regulator available at pin SCL/Vz, this module can easily be powered from higher voltage source (like VDD=8…16V). Only a few external components as depicted in the diagram below are required to achieve this.

With the second (synthesized zener diode) function of the SCL/Vz pin used the 2-wire interface function is available only if the voltage regulator is overdriven (5V regulated power is forced to Vdd pin). When the zener diode function of the SCL/Vz pin is used, the 2-wire SMBus function is only available if the voltage regulator is overdriven (5V regulated power is forced to the VDD pin).
11 Application Comments

Significant contamination at the optical input side (sensor filter) might cause unknown additional filtering/distortion of the optical signal and therefore result in unspecified errors.

IR sensors are inherently susceptible to errors caused by thermal gradients. There are physical reasons for that phenomena and, in spite of the careful design of the MLX90614xxx, it is recommended not to subject the MLX90614 to heat transfer and especially transient conditions.

Upon power-up the MLX90614 passes embedded checking and calibration routines. During these routines the output is not defined and it is recommended to wait for the specified POR time before reading the module. Very slow power-up may cause the embedded POR circuitry trigger on inappropriate levels, resulting in unspecified operation and is not recommended.

The MLX90614xxx is designed and calibrated to operate as a non contact thermometer in settled conditions. Using the module in very different way will result in unknown results.

Capacitive loading on a SMBus can degrade the communication. Some improvement is possible with use of current sources compared to resistors in pull-up circuitry. Further improvement is possible with specialized commercially available bus accelerators. With the MLX90614xxx additional improvement is possible with increasing the pull-up current (decreasing the pull-up resistor values). Input levels for SMBus compatible mode have higher overall tolerance than the SMBus specification, but the output low level is rather low even with the high-power SMBus specification for pull-up currents. Another option might be to go for a slower communication (clock speed), as the MLX90614xxx implements Schmidt triggers on it's inputs in SMBus compatible mode and is therefore not really sensitive to rise time of the bus (it is more likely the rise time to be an issue than the fall time, as far as the SMBus systems are open drain with pull-up).

For ESD protection there are clamp diodes between the Vss and Vdd and each of the other pins. This means that the MLX90614 might draw current from a bus in case the SCL and/or SDA is connected and the Vdd is lower than the bus pull-ups' voltage.

In 12V powered systems SMBus usage is constrained because the SCL pin is used for the zener diode function. Therefore, higher than 5V applications are likely to use PWM output or external regulator. Nevertheless, in the 12V powered applications MLX90614 can be programmed (configured and customized) by forcing the Vdd to 5V externally and running the SMBus communication.

Sleep mode is available in MLX90614Bxx. This mode is entered and exited via the SMBus compatible 2-wire communication. On the other hand, the extended functionality of the SCL pin yields in increased leakage current through that pin. As a result, this pin needs to be forced low in power-down mode and the pull-up on the SCL line needs to be disabled in order to keep the overall power drain in power-down really small.

The PWM pin is not designed for direct drive of inductive loads (such as electro-magnetic relays). Some driver needs to be implemented for higher load, and auxiliary protection might be necessary even for light but inductive loading.

It is possible to use the MLX90614xxx in applications, powered directly from the AC line (trasformerless). In such cases it is very important not to forget that the metal package of the sensor is not isolated and therefore may occur to be connected to that line, too. Melexis can not be responsible for any application like this and highly recommends not to use the MLX90614xxx in that way.

Power dissipation within the package may affect performance in two ways: by heating the “ambient” sensitive element significantly beyond the actual ambient temperature, as well as by causing gradients over the package that will inherently cause thermal gradient over the cap. Loading the outputs also causes increased power dissipation. In case of using the MLX90614xxx internal zener voltage feature, the regulating external transistor should also not cause heating of the TO39 package.
High capacitive load on a PWM line will result in significant charging currents from the power supply, bypassing the capacitor and therefore causing EMC, noise, level degradation and power dissipation problems. A simple option is adding a series resistor between the PWM/SDA pin and the capacitive loaded line, in which case timing specifications have to be carefully reviewed. For example, with a PWM output that is set to 1.024 ms and the output format that is 11 bit, the time step is 0.5 µs and a settling time of 2 µs would introduce a 4 LSBs error.

Check www.melexis.com for most current application notes about MLX90614.

Standard information regarding manufacturability of Melexis products with different soldering processes:

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD’s (Surface Mount Devices)

- IPC/JEDEC J-STD-020
 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
 (classification reflow profiles according to table 5-2)
- EIA/JEDEC JESD22-A113
 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing
 (reflow profiles according to table 2)

Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)

- EN60749-20
 Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat
- EIA/JEDEC JESD22-B106 and EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD’s (Through Hole Devices)

- EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)

- EIA/JEDEC JESD22-B102 and EN60749-21
 Solderability

For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website:
http://www.melexis.com/quality.asp

The MLX90614 is RoHS compliant
12 ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

13 FAQ

When I measure aluminium and plastic parts settled at the same conditions I get significant errors on aluminium. Why?

Different materials have different emissivity. A typical value for aluminium (roughly polished) is 0.18 and for plastics values of 0.84...0.95 are typical. IR thermometers use the radiation flux between the sensitive element in the sensor and the object of interest, given by the equation

\[q = \varepsilon_1 \sigma (T_1^4 - T_2^4) \left(A_1 - \varepsilon_2 T_2^4 \right) \sigma A_2, \]

where
- \(\varepsilon_1 \) and \(\varepsilon_2 \) are the emissivities of the two objects,
- \(\alpha \) is the absorptivity of the sensor (in this case),
- \(\sigma \) is the Stefan-Boltzmann constant,
- \(A_1 \) and \(A_2 \) are the surface areas involved in the radiation heat transfer,
- \(F_{\text{a-b}} \) is the shape factor,
- \(T_1 \) and \(T_2 \) are known temperature of the sensor die (measured with specially integrated and calibrated element) and the object temperature that we need.

Note that these are all in Kelvin, heat exchange knows only physics.

When a body with low emissivity (such as aluminium) is involved in this heat transfer, the portion of the radiation incident to the sensor element that really comes from the object of interest decreases – and the reflected environmental IR emissions take place. (This is all for bodies with zero transparency in the IR band.) The IR thermometer is calibrated to stay within specified accuracy – but it has no way to separate the incoming IR radiation into real object and reflected environmental part. Therefore, measuring objects with low emissivity is a very sophisticated issue and infra-red measurements of such materials is a specialised field.

What can be done to solve that problem? Look at paintings – for example, oil paints are likely to have emissivity of 0.85...0.95 – but keep in mind that the stability of the paint emissivity has inevitable impact on measurements.

It is also a good point to keep in mind that not everything that looks black is “black” also for IR. For example, even heavily oxidized aluminium has still emissivity as low as 0.30.

How high is enough? Not an easy question – but, in all cases the closer you need to get to the real object temperature the higher the needed emissivity will be, of course.

With the real life emissivity values the environmental IR comes into play via the reflectivity of the object (the sum of Emissivity, Reflectivity and Absorptivity gives 1.00 for any material). The larger the difference between environmental and object temperature is at given reflectivity (with an opaque for IR material reflectivity equals 1.00 minus emissivity) the bigger errors it produces.

After I put the MLX90614 in the dashboard I start getting errors larger than specified in spite that the module was working properly before that. Why?

Any object present in the FOV of the module provides IR signal. It is actually possible to introduce error in the measurements if the module is attached to the dashboard with an opening that enters the FOV. In that case portion of the dashboard opening will introduce IR signal in conjunction with constraining the effective FOV and thus compromising specified accuracy. Relevant opening that takes in account the FOV is a must for accurate measurements. Note that the basic FOV specification takes 50% of IR signal as threshold (in order to define the area, where the measurements are relevant), while the entire FOV at lower level is capable of introducing lateral IR signal under many conditions.
When a hot (cold) air stream hits my MLX90614 some error adds to the measured temperature I read. What is it?

IR sensors are inherently sensitive to difference in temperatures between the sensitive element and everything incident to that element. As a matter of fact, this element is not the sensor package, but the sensor die inside. Therefore, a thermal gradient over the sensor package will inevitably result in additional IR flux between the sensor package and the sensor die. This is real optical signal that can not be segregated from the target IR signal and will add errors to the measured temperature.

Thermal gradients with impact of that kind are likely to appear during transient conditions. The sensor used is developed with care about sensitivity to this kind of lateral phenomena, but their nature demands some care when choosing place to use the MLX90614 in order to make them negligible.

I measure human body temperature and I often get measurements that significantly differ from the +37°C I expect.

IR measurements are true surface temperature measurements. In many applications this means that the actual temperature measured by an IR thermometer will be temperature of the clothing and not the skin temperature. Emissivity (explained first in this section) is another issue with clothes that has to be considered. There is also the simple chance that the measured temperature is adequate – for example, in a cold winter human hand can appear at temperatures not too close to the well known +37°C.

I consider using MLX90614AAA to measure temperature within car compartment, but I am embarrassed about the Sun light that may hit the module. Is it a significant issue?

Special care is taken to cut off the visible light spectra as well as the NIR (near IR) before it reaches the sensitive sensor die. Even more, the glass (in most cases) is not transparent to the IR radiation used by the MLX90614. Glass has temperature and really high emissivity in most cases – it is “black” for IR of interest. Overall, Sun behind a window is most likely to introduce relatively small errors. Why is it not completely eliminated after all? Even visible light partially absorbed in the filter of the sensor has some heating potential – and there is no way that the sensor die will be “blind” for that heating right in front of it.
14 Package Information

The MLX90614 is packaged in an industry standard TO – 39 can.

Figure 26: Packaging options
15 References

Inc., Maxim Integrated Products, Mitsubishi Electric Semiconductor Company, PowerSmart, Inc.,
Toshiba Battery Co. Ltd., Unitrode Corporation, USAR Systems, Inc.

16 Disclaimer

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its
Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement.
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior
to designing this product into a system, it is necessary to check with Melexis for current information. This
product is intended for use in normal commercial applications. Applications requiring extended temperature
range, unusual environmental requirements, or high reliability applications, such as military, medical life-
support or life-sustaining equipment are specifically not recommended without additional processing by
Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be
liable to recipient or any third party for any damages, including but not limited to personal injury, property
damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential
damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical
data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering
of technical or other services.
© 2006 Melexis NV. All rights reserved.