o4

4 - -
& BDItVIS

"I

SBI BFM — Quick Reference

sbi_write (addr_value, data_value, msg, clk, sbi_if, [scope, [msg_id_panel, [config]]])
Example: sbi_write(x"1000", x"40”, “Set baud rate to 9600”, clk, sbi_if); B F M

Suggested usage: sbi_write(C_ADDR_UART_TX, C_BAUD_9600, “Set baud rate to 9600"); -- Suggested usage requires local overload (see section 5)

sbi_read (addr_value, data_value, msg, clk, sbi_if, [scope, [msg_id_panel, [config, [proc_name]]]])
Example: sbi_read(x"1000", v_data_out, “Read UART baud rate”, clk, sbi_if);

Suggested usage: sbi_read(C_ADDR_UART_BAUD, v_data_out, “Read UART baud rate’); -- Suggested usage requires local overload (see section 5) Sb’—bf m_p kg -vhd

sbi_check (addr_value, data_exp, msg, clk, sbi_if, [alert_level, [scope, [msg_id_panel, [config]]]])
Example: sbi_check(x"1155", x"3B”, “Check data from UART RX, clk, sbi_if);

Suggested usage: sbi_check(C_ADDR_UART_RX, x"3B”, “Check data from UART RX’); -- Suggested usage requires local overload (see section 5)

sbi_poll_until (addr_value, data_exp, max_polls, timeout, msg, clk, sbi_if, terminate_loop, [alert_level, [scope, [msg_id_panel, [config]]]])
Example: sbi_poll_until(x"1155", x"0D”, 10, 100 ns, “Read UART until CR is found”, clk, sbi_if, terminate_loop);

Suggested usage: sbi_poll_until(C_ADDR_UART_RX, x’0D”, “Read UART until CR is found”); -- Suggested usage requires local overload (see section 5)

init_sbi_if_signals (addr_width, data_width)

Example: sbi_if <=init_sbi_if signals(addr_width, data_width);

BFM Configuration record ‘'t sbi_bfm config” Signal record 't_sbi if’
Name Type C_SBI_BFM_CONFIG_DEFAULT Name Type

max_wait_cycles integer 10 cs std_logic
max_wait_cycles_severity t_alert_level FAILURE addr unsigned
use_fixed_wait_cycles_read boolean false wena std_logic
fixed_wait_cycles_read natural 0 rena std_logic
clock_period time 10 ns wdata std_logic_vector
id_for_bfm t_msg_id ID_BFM ready std_logic
id_for_bfm_wait t_msg_id ID_BFM_WAIT rdata std_logic_vector
id_for_bfm_poll t_msg_id ID_BFM_POLL

use_ready_signal boolean true

o)

UVVM™

Copyright © 2017 by Bitvis AS. All rights reserved. VHDL 2008 only

& & = &
& bItvis
’o&'i
,"
BFM non-signal parameters

Name Type Example(s) Description

addr_value unsigned X"5A” The address of a software accessible register.

data_value std_logic_vector x"D3” The data value to be written to the addressed register

data_exp std_logic_vector x"0D” The data value to expect when reading the addressed register. A mismatch results in an alert with severity
‘alert_level

max_polls integer 1 The maximum number of polls (reads) before the expected data must be found. Exceeding this limit results in
an alert with severity ‘alert_level’.

timeout time 100 ns The maximum time to pass before the expected data must be found. Exceeding this limit results in an alert
with severity ‘alert_level.

alert_level t_alert_level ERROR or TB_WARNING Set the severity for the alert that may be asserted by the BFM procedure.

msg string “Write to Peripheral 1” A custom message to be appended in the log/alert.

scope string "SBI BFM" A string describing the scope from which the log/alert originates.
In a simple single sequencer typically "SBI BFM". In a verification component typically "SBI_VVC ".

msg_id_panel t_msg_id_panel shared_msg_id_panel Optional msg_id_panel, controlling verbosity within a specified scope. Defaults to a common ID panel defined
in the adaptations package.

config t_sbi_bfm_config C_SBI_BFM_CONFIG_DEFAULT Configuration of BFM behaviour and restrictions. See section 2 for details.

BFM signal parameters

Name Type Description

clk std_logic The clock signal used to read and write data in/out of SBI BFM.
sbi_if t_sbi_if See table “Signal record ‘t_sbi_if”

terminate_loop std_logic External control of loop termination to e.g. stop polling prematurely

Note: All signals are active high.

SBI BFM - Quick Reference Version 2.0.x - Last update: 2017-06-07 support@bitvis.no +47 66 98 87 59 www.bitvis.no 2(8

o

‘ | -~
s bItvis

,"

BFM details

1 BFM procedure details and examples
Procedure Description

sbi_write()
sbi_write(addr_value, data_value, msg, clk, sbi_if, [scope, [msg_id_panel, [config]]])

The sbi_write() procedure writes the given data to the given address on the DUT, using the SBI protocol:

1. At ‘config.clock_period’/4 after the first rising clock edge the bus lines are set:
a. csandwenaaresetto ‘1’
b. renaissetto ‘0’
c. addris set to the write address, normalized to the addr size
d. wdata is set to the data to be written, normalized to the wdata size

2. After one clock period the DUT ready signal is evaluated:
a. Ifreadyis ‘1", cs and wena are set to ‘0’ again and the write procedure was successful
b. Ifreadyis ‘0, the procedure will wait one clock cycle and evaluate the ready signal again. This will repeat until ready is set to ‘1", or invoke an error if the process

has repeated ‘config.max_wait_cycles’ times. A log message with ID config.id_for_bfm_wait is logged at the first wait.

- The default value of scope is C_SCOPE (“SBI BFM”)

- The default value of msg_id_panel is shared_msg_id_panel, defined in UVVM_UTil.

- The default value of config is C_SBI_BFM_CONFIG_DEFAULT, see table on the first page.

- A log message is written if message ID ‘config.id_for_bfm’ is enabled for the specified message ID panel.

The procedure reports an alert if:
- ready signal is not set to ‘1" within ‘config.max_wait_cycles’ after cs and wena are set to ‘1’ (alert_level: ‘config.max_wait_cycles_severity’).

Example usage:
- sbi_write(x"1000", x"55”, “Write data to Peripheral 17, clk, sbi_if);

- sbi_write(x"1000", x"55”, “Write data to Peripheral 17, clk, sbi_if, C_SCOPE, shared_msg_id_panel, C_SBI_BFM_CONFIG_DEFAULT);

Suggested usage (requires local overload, see section 5):
- sbi_write(C_ADDR_UART_TX, x"40”, “Set baud rate to 9600”);

sbi_read()
sbi_read(addr_value, data_value, msg, clk, sbi_if, [scope, [msg_id_panel, [config, [proc_name]]]])

The sbi_read() procedure reads data from the DUT at the given address, using the SBI protocol:

1. At ‘config.clock_period’/4 after the first rising clock edge the bus lines are set:
a. csandrenaare setto ‘1’
b. wenais setto ‘0’
c. addr is set to the read address, normalized to the size of addr

2. After one clock period the DUT ready signal is evaluated:
a. Ifreadyis ‘1", cs and rena are set to ‘0’ again and the data on the rdata line is returned to the reader in ‘data_value’
b. Ifreadyis ‘0’, the procedure will wait one clock cycle and evaluate the ready signal again. This will repeat until ready is set to ‘1", or invoke an error if the process

has repeated ‘config.max_wait_cycles’ times. A log message with ID config.id_for_bfm_wait is logged at the first wait.

SBI BFM - Quick Reference Version 2.0.x - Last update: 2017-06-07 support@bitvis.no +47 66 98 87 59 www.bitvis.no 3(8)

o

‘ -~ -~
& bDItvis

,"

- The default value of scope is C_SCOPE (“SBI BFM”)

- The default value of msg_id_panel is shared_msg_id_panel, defined in UVVM_UTil.

- The default value of config is C_SBI_BFM_CONFIG_DEFAULT, see table on the first page.

- The default value of proc_name is “sbi_read”. This argument is intended to be used internally, when procedure is called by sbi_check() or sbi_poll_until().

- A log message is written if ‘config.id_for_bfm’ ID is enabled for the specified message ID panel. This will only occur if the argument proc_name is left unchanged.

The procedure reports an alert if:
- ready signal is not set to ‘1" within ‘config.max_wait_cycles’ after cs and wena are set to ‘1’ (alert_level: ‘config.max_wait_cycles_severity’)

Example usage:
- sbi_read(x"1000", v_data_out, “Read from Peripheral 17, clk, sbi_if);
- sbi_read(x"1000", v_data_out, “Read from Peripheral 17, clk, sbi_if,, C_SCOPE, shared_msg_id_panel, C_SBl_BFM_CONFIG_DEFAULT);

Suggested usage (requires local overload, see section 5):
- sbi_read(C_ADDR_UART_BAUD, v_data_out, “Read UART baud rate”);

sbi_check()
sbi_check(addr_value, data_exp, msg, clk, sbi_if, [alert_level, [scope, [msg_id_panel, [config]]]])
The sbi_check() procedure reads data from the DUT at the given address, using the SBI protocol described under sbi_read(). After reading data from the SBI bus, the read data is
compared with the expected data, ‘data_exp’.
- The default value of alert_level is ERROR
- The default value of scope is C_SCOPE (“SBI BFM”)
- The default value of msg_id_panel is shared_msg_id_panel, defined in UVVM_UTil.
- The default value of config is C_SBI_BFM_CONFIG_DEFAULT, see table on the first page.
- If the check was successful, and the read data matches the expected data, a log message is written with ID ‘config.id_for_bfm’ (if this ID has been enabled).
- If the read data did not match the expected data, an alert with severity ‘alert_level’ will be reported.
The procedure will also report alerts for the same conditions as the sbi_read() procedure.
Example
- sbi_check(x"1155", x”3B”, “Check data from Peripheral 17, clk, sbi_if);
- sbi_check(x"1155", x”3B”, “Check data from Peripheral 17, clk, sbi_if, ERROR, C_SCOPE, shared_msg_id_panel, C_SBI_BFM_CONFIG_DEFAULT);
Suggested usage (requires local overload, see section 5):
- sbi_check(C_ADDR_UART_RX, x"3B”, “Check data from UART RX buffer”);
sbi_poll_until()

sbi_poll_until(addr_value, data_exp, max_polls, timeout, msg, clk, sbi_if, terminate_loop, [alert_level, [scope, [msg_id_panel, [config]]]])

The sbi_poll_until() procedure reads data from the DUT at the given address, using the SBI protocol described under sbi_read(). After reading data from the DUT, the read data is
compared with the expected data, ‘data_exp’. If the read data does not match the expected data, the process is repeated until one or more of the following occurs:

1. The read data matches the expected data, ‘data_exp’

2. The number of read retries is equal to ‘max_polls’

3. The time between start of sbi_poll_until procedure and now is greater than ‘timeout’

4. ‘terminate_loop’ signal is setto ‘1’

If the procedure exits because of 2. or 3. an alert with severity ‘alert_level’ is issued. If either ‘max_polls’ or ‘timeout’ is set to 0 (ns), this constraint will be ignored and interpreted as
no limit.

SBI BFM - Quick Reference Version 2.0.x - Last update: 2017-06-07 support@bitvis.no +47 66 98 87 59 www.bitvis.no 4(8)

4,
'&'

’ - -~
& DItVIS
4

%

- The default value of alert_level is ERROR

- The default value of scope is C_SCOPE (“SBI BFM”)

- The default value of msg_id_panel is shared_msg_id_panel, defined in UVVM_UTil.

- The default value of config is C_SBI_BFM_CONFIG_DEFAULT, see table on the first page.

- If the check was successful, and the read data matches the expected data, a log message is written with ID ‘config.id_for_bfm’ (if this ID has been enabled).
- If the procedure is terminated using ‘terminate_loop’ a log message with ID ID_TERMINATE_CMD will be issued.

- If the read data did not match the expected data, an alert with severity ‘alert_level’ will be reported.

The procedure will also report alerts for the same conditions as the sbi_read() procedure.

Example

- sbi_poll_until(x"1155", x"0D”, 10, 100 ns, “Poll for data from Peripheral 17, clk, sbi_if, terminate_loop);

- sbi_poll_until(x"1155", x’0D”, 10, 100 ns, “Poll for data from Peripheral 17, clk, sbi_if, terminate_loop, ERROR, C_SCOPE, shared_msg_id_panel,
C_SBI_BFM_CONFIG_DEFAULT);

Suggested usage (requires local overload, see section 5):
- sbi_poll_until(C_ADDR_UART_RX, x"0D”, “Poll UART RX buffer until CR is found”);
- sbi_poll_until(C_ADDR_UART_RX, x’0D”, C_MAX_POLLS, C_TIMEOUT, “Poll UART RX buffer until CR is found”);

init_sbi_if_signals()
init_sbi_if_signals(addr_width, data_width)

This function initializes the SBI interface. All the BFM outputs are set to zeros ('0'), and BFM inputs are set to 'Z'.
Example
- sbi_if <=init_sbi_if signals(addr_width, data_width)

SBI BFM - Quick Reference Version 2.0.x - Last update: 2017-06-07 support@bitvis.no +47 66 98 87 59 www.bitvis.no 5(8)

¢
K

)) - -
& brevis
2 BFM Configuration record)

Type name: t_sbi_bfm_config

C_SBI_BFM_CONFIG_DEFAULT Description

The maximum number of clock cycles to wait for the DUT ready signal before
reporting a timeout alert.

max_wait_cycles_severity t_alert_level failure The above timeout will have this severity

max_wait_cycles integer 10

When true, wait 'fixed_wait_cycles_read' after asserting ‘rena’ signal, before

use_fixed_wait_cycles_read boolean false sampling ‘rdata from DUT

fixed_wait_cycles_read natural 0 ‘Numb’er of clock cycles to wait after asserting ‘rena’ signal, before sampling
rdata’ from DUT.

clock_period time 10 ns Period of the clock signal.

id_for_bfm t_msg_id ID_BFM The message ID used as a general message ID in the SBI BFM

id_for_bfm_wait t_msg_id ID_BFM_WAIT The message ID used for logging waits in the SBI BFM

id_for_bfm_poll t_msg_id ID_BFM_POLL The message ID used for logging polling in the SBI BFM

use_ready_signal boolean true Whether or not to use the interface ‘ready’ signal

3 Additional Documentation

The SBI BFM is used in the IRQC example provided with the UVVM Ultility Library (available from Bitvis.no Downloads page). Thus you can find info under:
- ‘Making a simple, structured and efficient VHDL testbench — Step-by-step’ (PPT)
There is also a webinar available on ‘Making a simple, structured and efficient VHDL testbench — Step-by-step’ (via Aldec). Link is available on our Downloads page.

3.1 SBI protocol

SBl is our name for the simplest bus interface possible, one that has been used for decades in the electronics industry. Some think of it as a simple SRAM interface, but that is not a standard,
and is probably understood and used in many different ways. Thus we have defined a name and an exact behaviour, with some flexibility.

SBl is a single cycle bus with an optional ready-signalling. The protocol for SBI without ready-signalling is given below.

SBI BFM - Quick Reference Version 2.0.x - Last update: 2017-06-07 support@bitvis.no +47 66 98 87 59 www.bitvis.no 6(8)

o

4 - -~
& DItVIS
4

e [L L L L L L

s\)\

addr 7777/ \addr X7/ X addr X7/
wena 4/_\
rena /_\

wdata 777//) dataX/

' EX‘dat.aXv 2 l i

SBI Timing diagram

rdata

As can be seen from the figure all required signals including data input must be ready on the rising edge of the clock. This also applies for a read access, but the actual data output is
provided combinatorial as soon as the combinational logic allows

Note that an active 'cs', a valid 'addr' and an active 'wena' or 'rena’ is needed on the same active clock edge to be registered as a valid read or write. (Being active on two consecutive rising
clocks will result in two consecutive accesses - with or without side-effects depending on the module's internal functional logic.) 'rdata’ will just ripple out for the right combination of ‘cs', 'addr'
and 'rena’.

With this simple version the designer has the option to provide input and/or output registers externally to allow a higher frequency (with added latency).

SBI has optional ready-signalling. When 'ready' is used it applies to both read and write accesses. For both read and write accesses all input signals must be held until 'ready’' is active. For a
read access the output data may not be used (sampled) until 'ready’ is active, but must do so on the first rising edge of the clock after 'ready' active.

4 Compilation

The SBI BFM may only be compiled with VHDL 2008. It is dependent on the UVVM Utility Library (UVVM-Util), which is only compatible with VHDL 2008.
See the separate UVVM-ULtil documentation for more info. After UVVM-ULtil has been compiled, the sbi_bfm_pkg.vhd BFM can be compiled into any desired library.

4.1 Simulator compatibility and setup
This BFM has been compiled and tested with Modelsim version 10.3d and Riviera-PRO version 2015.10.85.

For required simulator setup see UVVM-Util Quick reference.

SBI BFM - Quick Reference Version 2.0.x - Last update: 2017-06-07 support@bitvis.no +47 66 98 87 59 www.bitvis.no 7(8)

‘:,:{" B B
& DItVIS
4

Y%

5 Local BFM overloads
A good approach for better readability and maintainability is to make simple, local overloads for the BFM procedures in the TB process.
This allows calling the BFM procedures with the key parameters only
e.g.

sbi_write(C_ADDR_UART_BAUDRATE, C_BAUDRATE_9600, “Set Baudrate to 9600");
rather than

sbi_write(C_ADDR_UART_BAUDRATE, C_BAUDRATE_9600, “Set Baudrate to 9600”, clk, sbi_if,

C_CLK_PERIOD, C_SCOPE, shared_msg_id_panel, C_SBI_CONFIG_DEFAULT);

By defining the local overload as e.g.:

procedure sbi write(

constant addr value : in unsigned;
constant data value : in std logic vector;
constant msg : in string) is
begin
sbi write(addr value, -- keep as is
data value, -- keep as is
msg, -- keep as is
sbi if, -- Signal must be visible in local process scope
C_CLK PERIOD, -- Just use the default
C_SCOFPE, -- Just use the default
shared msg id panel, -- Use global, shared msg id panel
C_SBI CONFIG_ LOCAL) ; -- Use locally defined configuration or C SBI CONFIG DEFAULT
end;

Using a local overload like this also allows the following — if wanted:
- Have address value as natural — and convert in the overload
- Set up defaults for constants. May be different for two overloads of the same BFM
- Apply dedicated message ID panel to allow dedicated verbosity control

IMPORTANT

This is a simplified Bus Functional Model (BFM) for SBI.

The given BFM complies with the basic SBI protocol and thus allows a normal access towards a SBI interface. This BFM is not a SBI protocol checker.
For a more advanced BFM please contact Bitvis AS at support@bitvis.no

INTELLECTUAL Disclaimer: This IP and any part thereof are provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement.
PROPERTY In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with this IP.

SBI BFM - Quick Reference Version 2.0.x - Last update: 2017-06-07 support@bitvis.no +47 66 98 87 59 www.bitvis.no 8(8)

