

Copyright © 2017 by Bitvis AS. All rights reserved. VHDL 2008 only

SBI BFM – Quick Reference
sbi_write (addr_value, data_value, msg, clk, sbi_if, [scope, [msg_id_panel, [config]]])

Example: sbi_write(x"1000", x”40”, “Set baud rate to 9600”, clk, sbi_if);

Suggested usage: sbi_write(C_ADDR_UART_TX, C_BAUD_9600, “Set baud rate to 9600”); -- Suggested usage requires local overload (see section 5)

sbi_read (addr_value, data_value, msg, clk, sbi_if, [scope, [msg_id_panel, [config, [proc_name]]]])

Example: sbi_read(x"1000", v_data_out, “Read UART baud rate”, clk, sbi_if);

Suggested usage: sbi_read(C_ADDR_UART_BAUD, v_data_out, “Read UART baud rate”); -- Suggested usage requires local overload (see section 5)

sbi_check (addr_value, data_exp, msg, clk, sbi_if, [alert_level, [scope, [msg_id_panel, [config]]]])

Example: sbi_check(x"1155", x”3B”, “Check data from UART RX”, clk, sbi_if);

Suggested usage: sbi_check(C_ADDR_UART_RX, x”3B”, “Check data from UART RX”); -- Suggested usage requires local overload (see section 5)

sbi_poll_until (addr_value, data_exp, max_polls, timeout, msg, clk, sbi_if, terminate_loop, [alert_level, [scope, [msg_id_panel, [config]]]])

Example: sbi_poll_until(x"1155", x”0D”, 10, 100 ns, “Read UART until CR is found”, clk, sbi_if, terminate_loop);

Suggested usage: sbi_poll_until(C_ADDR_UART_RX, x”0D”, “Read UART until CR is found”); -- Suggested usage requires local overload (see section 5)

init_sbi_if_signals (addr_width, data_width)

Example: sbi_if <= init_sbi_if_signals(addr_width, data_width);

BFM Configuration record ´t_sbi_bfm_config´

Name Type C_SBI_BFM_CONFIG_DEFAULT
max_wait_cycles integer 10
max_wait_cycles_severity t_alert_level FAILURE
use_fixed_wait_cycles_read boolean false
fixed_wait_cycles_read natural 0
clock_period time 10 ns
id_for_bfm t_msg_id ID_BFM
id_for_bfm_wait t_msg_id ID_BFM_WAIT
id_for_bfm_poll t_msg_id ID_BFM_POLL
use_ready_signal boolean true

Name Type
cs std_logic
addr unsigned
wena std_logic
rena std_logic
wdata std_logic_vector
ready std_logic
rdata std_logic_vector

sbi_bfm_pkg.vhd

Signal record ´t_sbi_if´

BFM

SBI BFM - Quick Reference Version 2.0.x - Last update: 2017-06-07 support@bitvis.no +47 66 98 87 59 www.bitvis.no

2 (8)

BFM non-signal parameters
Name Type Example(s) Description
addr_value unsigned x”5A” The address of a software accessible register.
data_value std_logic_vector x”D3” The data value to be written to the addressed register
data_exp std_logic_vector x”0D” The data value to expect when reading the addressed register. A mismatch results in an alert with severity

‘alert_level’
max_polls integer 1 The maximum number of polls (reads) before the expected data must be found. Exceeding this limit results in

an alert with severity ‘alert_level’.
timeout time 100 ns The maximum time to pass before the expected data must be found. Exceeding this limit results in an alert

with severity ‘alert_level’.
alert_level t_alert_level ERROR or TB_WARNING Set the severity for the alert that may be asserted by the BFM procedure.
msg string “Write to Peripheral 1” A custom message to be appended in the log/alert.
scope string "SBI BFM" A string describing the scope from which the log/alert originates.

In a simple single sequencer typically "SBI BFM". In a verification component typically "SBI_VVC ".
msg_id_panel t_msg_id_panel shared_msg_id_panel Optional msg_id_panel, controlling verbosity within a specified scope. Defaults to a common ID panel defined

in the adaptations package.
config t_sbi_bfm_config C_SBI_BFM_CONFIG_DEFAULT Configuration of BFM behaviour and restrictions. See section 2 for details.

BFM signal parameters
Name Type Description
clk std_logic The clock signal used to read and write data in/out of SBI BFM.
sbi_if t_sbi_if See table “Signal record ‘t_sbi_if’”
terminate_loop std_logic External control of loop termination to e.g. stop polling prematurely

Note: All signals are active high.

SBI BFM - Quick Reference Version 2.0.x - Last update: 2017-06-07 support@bitvis.no +47 66 98 87 59 www.bitvis.no

3 (8)

BFM details
1 BFM procedure details and examples
Procedure Description
sbi_write()

sbi_write(addr_value, data_value, msg, clk, sbi_if, [scope, [msg_id_panel, [config]]])

The sbi_write() procedure writes the given data to the given address on the DUT, using the SBI protocol:
1. At ‘config.clock_period’/4 after the first rising clock edge the bus lines are set:

a. cs and wena are set to ‘1’
b. rena is set to ‘0’
c. addr is set to the write address, normalized to the addr size
d. wdata is set to the data to be written, normalized to the wdata size

2. After one clock period the DUT ready signal is evaluated:
a. If ready is ‘1’, cs and wena are set to ‘0’ again and the write procedure was successful
b. If ready is ‘0’, the procedure will wait one clock cycle and evaluate the ready signal again. This will repeat until ready is set to ‘1’, or invoke an error if the process

has repeated ‘config.max_wait_cycles’ times. A log message with ID config.id_for_bfm_wait is logged at the first wait.

- The default value of scope is C_SCOPE (“SBI BFM”)
- The default value of msg_id_panel is shared_msg_id_panel, defined in UVVM_Util.
- The default value of config is C_SBI_BFM_CONFIG_DEFAULT, see table on the first page.
- A log message is written if message ID ‘config.id_for_bfm’ is enabled for the specified message ID panel.

The procedure reports an alert if:
- ready signal is not set to ‘1’ within ‘config.max_wait_cycles’ after cs and wena are set to ‘1’ (alert_level: ‘config.max_wait_cycles_severity’).

Example usage:
- sbi_write(x"1000", x”55”, “Write data to Peripheral 1”, clk, sbi_if);
- sbi_write(x"1000", x”55”, “Write data to Peripheral 1”, clk, sbi_if, C_SCOPE, shared_msg_id_panel, C_SBI_BFM_CONFIG_DEFAULT);

Suggested usage (requires local overload, see section 5):
- sbi_write(C_ADDR_UART_TX, x”40”, “Set baud rate to 9600”);

sbi_read()

sbi_read(addr_value, data_value, msg, clk, sbi_if, [scope, [msg_id_panel, [config, [proc_name]]]])

The sbi_read() procedure reads data from the DUT at the given address, using the SBI protocol:
1. At ‘config.clock_period’/4 after the first rising clock edge the bus lines are set:

a. cs and rena are set to ‘1’
b. wena is set to ‘0’
c. addr is set to the read address, normalized to the size of addr

2. After one clock period the DUT ready signal is evaluated:
a. If ready is ‘1’, cs and rena are set to ‘0’ again and the data on the rdata line is returned to the reader in ‘data_value’
b. If ready is ‘0’, the procedure will wait one clock cycle and evaluate the ready signal again. This will repeat until ready is set to ‘1’, or invoke an error if the process

has repeated ‘config.max_wait_cycles’ times. A log message with ID config.id_for_bfm_wait is logged at the first wait.

SBI BFM - Quick Reference Version 2.0.x - Last update: 2017-06-07 support@bitvis.no +47 66 98 87 59 www.bitvis.no

4 (8)

- The default value of scope is C_SCOPE (“SBI BFM”)
- The default value of msg_id_panel is shared_msg_id_panel, defined in UVVM_Util.
- The default value of config is C_SBI_BFM_CONFIG_DEFAULT, see table on the first page.
- The default value of proc_name is “sbi_read”. This argument is intended to be used internally, when procedure is called by sbi_check() or sbi_poll_until().
- A log message is written if ‘config.id_for_bfm’ ID is enabled for the specified message ID panel. This will only occur if the argument proc_name is left unchanged.

The procedure reports an alert if:
- ready signal is not set to ‘1’ within ‘config.max_wait_cycles’ after cs and wena are set to ‘1’ (alert_level: ‘config.max_wait_cycles_severity’)

Example usage:
- sbi_read(x"1000", v_data_out, “Read from Peripheral 1”, clk, sbi_if);
- sbi_read(x"1000", v_data_out, “Read from Peripheral 1”, clk, sbi_if,, C_SCOPE, shared_msg_id_panel, C_SBI_BFM_CONFIG_DEFAULT);

Suggested usage (requires local overload, see section 5):
- sbi_read(C_ADDR_UART_BAUD, v_data_out, “Read UART baud rate”);

sbi_check()

sbi_check(addr_value, data_exp, msg, clk, sbi_if, [alert_level, [scope, [msg_id_panel, [config]]]])

The sbi_check() procedure reads data from the DUT at the given address, using the SBI protocol described under sbi_read(). After reading data from the SBI bus, the read data is
compared with the expected data, ‘data_exp’.
- The default value of alert_level is ERROR
- The default value of scope is C_SCOPE (“SBI BFM”)
- The default value of msg_id_panel is shared_msg_id_panel, defined in UVVM_Util.
- The default value of config is C_SBI_BFM_CONFIG_DEFAULT, see table on the first page.
- If the check was successful, and the read data matches the expected data, a log message is written with ID ‘config.id_for_bfm’ (if this ID has been enabled).
- If the read data did not match the expected data, an alert with severity ‘alert_level’ will be reported.

The procedure will also report alerts for the same conditions as the sbi_read() procedure.

Example
- sbi_check(x"1155", x”3B”, “Check data from Peripheral 1”, clk, sbi_if);
- sbi_check(x"1155", x”3B”, “Check data from Peripheral 1”, clk, sbi_if, ERROR, C_SCOPE, shared_msg_id_panel, C_SBI_BFM_CONFIG_DEFAULT);

Suggested usage (requires local overload, see section 5):
- sbi_check(C_ADDR_UART_RX, x”3B”, “Check data from UART RX buffer”);

sbi_poll_until()

sbi_poll_until(addr_value, data_exp, max_polls, timeout, msg, clk, sbi_if, terminate_loop, [alert_level, [scope, [msg_id_panel, [config]]]])

The sbi_poll_until() procedure reads data from the DUT at the given address, using the SBI protocol described under sbi_read(). After reading data from the DUT, the read data is
compared with the expected data, ‘data_exp’. If the read data does not match the expected data, the process is repeated until one or more of the following occurs:

1. The read data matches the expected data, ‘data_exp’
2. The number of read retries is equal to ‘max_polls’
3. The time between start of sbi_poll_until procedure and now is greater than ‘timeout’
4. ‘terminate_loop’ signal is set to ‘1’

If the procedure exits because of 2. or 3. an alert with severity ‘alert_level’ is issued. If either ‘max_polls’ or ‘timeout’ is set to 0 (ns), this constraint will be ignored and interpreted as
no limit.

SBI BFM - Quick Reference Version 2.0.x - Last update: 2017-06-07 support@bitvis.no +47 66 98 87 59 www.bitvis.no

5 (8)

- The default value of alert_level is ERROR
- The default value of scope is C_SCOPE (“SBI BFM”)
- The default value of msg_id_panel is shared_msg_id_panel, defined in UVVM_Util.
- The default value of config is C_SBI_BFM_CONFIG_DEFAULT, see table on the first page.
- If the check was successful, and the read data matches the expected data, a log message is written with ID ‘config.id_for_bfm’ (if this ID has been enabled).
- If the procedure is terminated using ‘terminate_loop’ a log message with ID ID_TERMINATE_CMD will be issued.
- If the read data did not match the expected data, an alert with severity ‘alert_level’ will be reported.

The procedure will also report alerts for the same conditions as the sbi_read() procedure.

Example
- sbi_poll_until(x"1155", x”0D”, 10, 100 ns, “Poll for data from Peripheral 1”, clk, sbi_if, terminate_loop);
- sbi_poll_until(x"1155", x”0D”, 10, 100 ns, “Poll for data from Peripheral 1”, clk, sbi_if, terminate_loop, ERROR, C_SCOPE, shared_msg_id_panel,

C_SBI_BFM_CONFIG_DEFAULT);

Suggested usage (requires local overload, see section 5):
- sbi_poll_until(C_ADDR_UART_RX, x”0D”, “Poll UART RX buffer until CR is found”);
- sbi_poll_until(C_ADDR_UART_RX, x”0D”, C_MAX_POLLS, C_TIMEOUT, “Poll UART RX buffer until CR is found”);

init_sbi_if_signals()

 init_sbi_if_signals(addr_width, data_width)

This function initializes the SBI interface. All the BFM outputs are set to zeros ('0'), and BFM inputs are set to 'Z'.
Example
- sbi_if <= init_sbi_if_signals(addr_width, data_width)

SBI BFM - Quick Reference Version 2.0.x - Last update: 2017-06-07 support@bitvis.no +47 66 98 87 59 www.bitvis.no

6 (8)

2 BFM Configuration record
Type name: t_sbi_bfm_config

Name Type C_SBI_BFM_CONFIG_DEFAULT Description

max_wait_cycles integer 10
The maximum number of clock cycles to wait for the DUT ready signal before
reporting a timeout alert.

max_wait_cycles_severity t_alert_level failure The above timeout will have this severity

use_fixed_wait_cycles_read boolean false
When true, wait 'fixed_wait_cycles_read' after asserting ‘rena’ signal, before
sampling ‘rdata from DUT’

fixed_wait_cycles_read natural 0
Number of clock cycles to wait after asserting ‘rena’ signal, before sampling
‘rdata’ from DUT.

clock_period time 10 ns Period of the clock signal.
id_for_bfm t_msg_id ID_BFM The message ID used as a general message ID in the SBI BFM
id_for_bfm_wait t_msg_id ID_BFM_WAIT The message ID used for logging waits in the SBI BFM
id_for_bfm_poll t_msg_id ID_BFM_POLL The message ID used for logging polling in the SBI BFM
use_ready_signal boolean true Whether or not to use the interface ‘ready’ signal

3 Additional Documentation
The SBI BFM is used in the IRQC example provided with the UVVM Utility Library (available from Bitvis.no Downloads page). Thus you can find info under:
- ‘Making a simple, structured and efficient VHDL testbench – Step-by-step’ (PPT)
There is also a webinar available on ‘Making a simple, structured and efficient VHDL testbench – Step-by-step’ (via Aldec). Link is available on our Downloads page.

3.1 SBI protocol
SBI is our name for the simplest bus interface possible, one that has been used for decades in the electronics industry. Some think of it as a simple SRAM interface, but that is not a standard,
and is probably understood and used in many different ways. Thus we have defined a name and an exact behaviour, with some flexibility.

SBI is a single cycle bus with an optional ready-signalling. The protocol for SBI without ready-signalling is given below.

SBI BFM - Quick Reference Version 2.0.x - Last update: 2017-06-07 support@bitvis.no +47 66 98 87 59 www.bitvis.no

7 (8)

As can be seen from the figure all required signals including data input must be ready on the rising edge of the clock. This also applies for a read access, but the actual data output is
provided combinatorial as soon as the combinational logic allows
Note that an active 'cs', a valid 'addr' and an active 'wena' or 'rena' is needed on the same active clock edge to be registered as a valid read or write. (Being active on two consecutive rising
clocks will result in two consecutive accesses - with or without side-effects depending on the module's internal functional logic.) 'rdata' will just ripple out for the right combination of 'cs', 'addr'
and 'rena'.
With this simple version the designer has the option to provide input and/or output registers externally to allow a higher frequency (with added latency).
SBI has optional ready-signalling. When 'ready' is used it applies to both read and write accesses. For both read and write accesses all input signals must be held until 'ready' is active. For a
read access the output data may not be used (sampled) until 'ready' is active, but must do so on the first rising edge of the clock after 'ready' active.

4 Compilation
The SBI BFM may only be compiled with VHDL 2008. It is dependent on the UVVM Utility Library (UVVM-Util), which is only compatible with VHDL 2008.
See the separate UVVM-Util documentation for more info. After UVVM-Util has been compiled, the sbi_bfm_pkg.vhd BFM can be compiled into any desired library.

4.1 Simulator compatibility and setup
This BFM has been compiled and tested with Modelsim version 10.3d and Riviera-PRO version 2015.10.85.

For required simulator setup see UVVM-Util Quick reference.

SBI BFM - Quick Reference Version 2.0.x - Last update: 2017-06-07 support@bitvis.no +47 66 98 87 59 www.bitvis.no

8 (8)

5 Local BFM overloads
A good approach for better readability and maintainability is to make simple, local overloads for the BFM procedures in the TB process.
This allows calling the BFM procedures with the key parameters only
e.g.

sbi_write(C_ADDR_UART_BAUDRATE, C_BAUDRATE_9600, “Set Baudrate to 9600”);
rather than
 sbi_write(C_ADDR_UART_BAUDRATE, C_BAUDRATE_9600, “Set Baudrate to 9600”, clk, sbi_if,

 C_CLK_PERIOD, C_SCOPE, shared_msg_id_panel, C_SBI_CONFIG_DEFAULT);

By defining the local overload as e.g.:

 procedure sbi_write(

constant addr_value : in unsigned;
constant data_value : in std_logic_vector;
constant msg : in string) is

 begin
sbi_write(addr_value, -- keep as is
 data_value, -- keep as is

 msg, -- keep as is
 sbi_if, -- Signal must be visible in local process scope
 C_CLK_PERIOD, -- Just use the default
 C_SCOPE, -- Just use the default
 shared_msg_id_panel, -- Use global, shared msg_id_panel
 C_SBI_CONFIG_LOCAL); -- Use locally defined configuration or C_SBI_CONFIG_DEFAULT

 end;

Using a local overload like this also allows the following – if wanted:

- Have address value as natural – and convert in the overload
- Set up defaults for constants. May be different for two overloads of the same BFM
- Apply dedicated message ID panel to allow dedicated verbosity control

IMPORTANT
This is a simplified Bus Functional Model (BFM) for SBI.
The given BFM complies with the basic SBI protocol and thus allows a normal access towards a SBI interface. This BFM is not a SBI protocol checker.
For a more advanced BFM please contact Bitvis AS at support@bitvis.no

Disclaimer: This IP and any part thereof are provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement.
In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with this IP.

INTELLECTUAL

PROPERTY

